Solubilization of struvite and biorecovery of cerium by Aspergillus niger

Xia Kang, Laszlo Csetenyi, Xiang Gao, Geoffrey Michael Gadd (Lead / Corresponding author)

Research output: Contribution to journalArticlepeer-review

5 Citations (Scopus)
70 Downloads (Pure)


Cerium has many modern applications such as in renewable energies and the biosynthesis of nanomaterials. In this research, natural struvite was solubilized by Aspergillus niger and the biomass-free struvite leachate was investigated for its ability to recover cerium. It was shown that struvite was completed solubilized following 2 weeks of fungal growth, which released inorganic phosphate (P i) from the mineral by the production of oxalic acid. Scanning electron microscopy (SEM) showed that crystals with distinctive morphologies were formed in the natural struvite leachate after mixing with Ce 3+. Energy-dispersive X-ray analysis (EDXA), X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR) confirmed the formation of cerium phosphate hydrate [Ce(PO 4)·H 2O] at lower Ce concentrations and a mixture of phosphate and cerium oxalate decahydrate [Ce 2(C 2O 4) 3·10H 2O] at higher Ce concentrations. The formation of these biogenic Ce minerals leads to the removal of > 99% Ce from solution. Thermal decomposition experiments showed that the biogenic Ce phosphates could be transformed into a mixture of CePO 4 and CeO 2 (cerianite) after heat treatment at 1000 °C. These results provide a new perspective of the fungal biotransformation of soluble REE species using struvite leachate, and also indicate the potential of using the recovered REE as biomaterial precursors with possible applications in the biosynthesis of novel nanomaterials, elemental recycling and biorecovery. Key points: • Cerium was recovered using a struvite leachate produced by A. niger. • Oxalic acid played a major role in struvite solubilization and Ce phosphate biorecovery. • Resulting nanoscale mineral products could serve as a precursor for Ce oxide synthesis.

Original languageEnglish
Pages (from-to)821-833
Number of pages13
JournalApplied Microbiology and Biotechnology
Early online date4 Jan 2022
Publication statusPublished - Jan 2022


  • Aspergillus niger
  • Cerium
  • Phosphate
  • Rare earth elements
  • Struvite

ASJC Scopus subject areas

  • Applied Microbiology and Biotechnology
  • Biotechnology


Dive into the research topics of 'Solubilization of struvite and biorecovery of cerium by Aspergillus niger'. Together they form a unique fingerprint.

Cite this