Solution structure of the SGTA dimerisation domain and investigation of its interactions with the ubiquitin-like domains of BAG6 and UBL4A

John F. Darby, Ewelina M. Krysztofinska, Peter J. Simpson, Aline C. Simon, Pawel Leznicki, Newran Sriskandarajah, David S. Bishop, Lisa R. Hale, Caterina Alfano, Maria R. Conte, Santiago Martínez-Lumbreras, Arjun Thapaliya, Stephen High, Rivka L. Isaacson (Lead / Corresponding author)

    Research output: Contribution to journalArticlepeer-review

    18 Citations (Scopus)
    180 Downloads (Pure)

    Abstract

    Background

    The BAG6 complex resides in the cytosol and acts as a sorting point to target diverse hydrophobic protein substrates along their appropriate paths, including proteasomal degradation and ER membrane insertion. Composed of a trimeric complex of BAG6, TRC35 and UBL4A, the BAG6 complex is closely associated with SGTA, a co-chaperone from which it can obtain hydrophobic substrates.

    Methodology and Principal Findings

    SGTA consists of an N-terminal dimerisation domain (SGTA_NT), a central tetratricopeptide repeat (TPR) domain, and a glutamine rich region towards the C-terminus. Here we solve a solution structure of the SGTA dimerisation domain and use biophysical techniques to investigate its interaction with two different UBL domains from the BAG6 complex. The SGTA_NT structure is a dimer with a tight hydrophobic interface connecting two sets of four alpha helices. Using a combination of NMR chemical shift perturbation, isothermal titration calorimetry (ITC) and microscale thermophoresis (MST) experiments we have biochemically characterised the interactions of SGTA with components of the BAG6 complex, the ubiquitin-like domain (UBL) containing proteins UBL4A and BAG6. We demonstrate that the UBL domains from UBL4A and BAG6 directly compete for binding to SGTA at the same site. Using a combination of structural and interaction data we have implemented the HADDOCK protein-protein interaction docking tool to generate models of the SGTA-UBL complexes.

    Significance

    This atomic level information contributes to our understanding of the way in which hydrophobic proteins have their fate decided by the collaboration between SGTA and the BAG6 complex.

    Original languageEnglish
    Article numbere0113281
    Number of pages19
    JournalPLoS ONE
    Volume9
    Issue number11
    DOIs
    Publication statusPublished - 21 Nov 2014

    ASJC Scopus subject areas

    • General Agricultural and Biological Sciences
    • General Biochemistry,Genetics and Molecular Biology
    • General Medicine

    Fingerprint

    Dive into the research topics of 'Solution structure of the SGTA dimerisation domain and investigation of its interactions with the ubiquitin-like domains of BAG6 and UBL4A'. Together they form a unique fingerprint.

    Cite this