Specification and maintenance of the spinal cord stem zone

Mariana Delfino-Machín, J. Simon Lunn, Dorette N. Breitkreuz, Jun Akai, Kate G. Storey

    Research output: Contribution to journalArticlepeer-review

    74 Citations (Scopus)


    Epiblast cells adjacent to the regressing primitive streak behave as a stem zone that progressively generates the entire spinal cord and also contributes to paraxial mesoderm. Despite this fundamental task, this cell population is poorly characterised, and the tissue interactions and signalling pathways that specify this unique region are unknown. Fibroblast growth factor (FGF) is implicated but it is unclear whether it is sufficient and/or directly required for stem zone specification. It is also not understood how establishment of the stem zone relates to the acquisition of spinal cord identity as indicated by expression of caudal Hox genes. Here, we show that many cells in the chick stem zone express both early neural and mesodermal genes; however, stem zone-specific gene expression can be induced by signals from underlying paraxial mesoderm without concomitant induction of an ambivalent neural/mesodermal cell state. The stem zone is a site of FGF/MAPK signalling and we show that although FGF alone does not mimic paraxial mesoderm signals, it is directly required in epiblast cells for stem zone specification and maintenance. We further demonstrate that caudal Hox gene expression in the stem zone also depends on FGF and that neither stem zone specification nor caudal Hox gene onset requires retinoid signalling. These findings thus support a two step model for spinal cord generation - FGF-dependent establishment of the stem zone in which progressively more caudal Hox genes are expressed, followed by the retinoid-dependent assignment of spinal cord identity.
    Original languageEnglish
    Pages (from-to)4273-4283
    Number of pages11
    Issue number19
    Publication statusPublished - Oct 2005


    • Stem zone
    • Stem cells
    • Spinal cord
    • FGF
    • MAPK
    • Hox genes
    • Chick


    Dive into the research topics of 'Specification and maintenance of the spinal cord stem zone'. Together they form a unique fingerprint.

    Cite this