Specificities of enzymes of glycosylphosphatidylinositol biosynthesis in trypanosoma brucei and HeLa cells

Terry K. Smith, Arthur Crossman, Michael J. Paterson, Charles N. Borissow, John S. Brimacombe, Michael A. J. Ferguson

    Research output: Contribution to journalArticle

    20 Citations (Scopus)

    Abstract

    A series of synthetic analogues Of D-GlcNalpha1-6-D-myo-inositol-1-HPO4-sn-1,2-dipalmitoylglycerol, consisting of 22 variants of the D-GlcN or lipid components, were tested in trypanosomal and human (HeLa) cell-free systems. The assays measured the abilities of the analogues to act as substrates or inhibitors of the enzymes of glycosylphosphatidylinositol biosynthesis downstream of GlcNAc-phosphatidylinositol (GlcNAc-PI) de-N-acetylase. One compound, 4-deoxy-D-GlcNalpha1-6-D-myo-inositol-1-HP04-Sn-1,2-dipalmitoylglycerol, proved to be an inhibitor of both the trypanosomal and HeLa pathways, whereas 4-O-methyl-D-GlcNalpha1-6-D-myo-inositol-1-HPO(4)sn-1,2-dipalmitoylglycerol and the 4'-epimer, D-GalN-alpha1-6-D-myo-inositol-1-HPO4-sn-1,2-dipalmitoylglycerol, were neither substrates nor inhibitors. The results with other analogues showed that the 6-OH of the alpha-D-GlcN residue is not required for substrate recognition in the trypanosomal and human pathways, whereas the 3-OH group is essential for both. Parasite-specific recognition of the P-linked analogue D-GlcNbeta1-6-D-myo-inositol-1-HPO4-sn-1,2-dipalmitoylglycerol is striking. This suggests that, like the GlcNAc-PI de-N-acetylase, the trypanosomal glycosylphosphatidylinositol alpha-mannosyltransferases, inositol acyltransferse and ethanolamine phosphate transferase, do not recognize the 2-, 3-, 4-, and 5-OH groups of the D-myo-inositol residue, whereas the human inositol acyltransferase and/or first alpha-mannosyltransferase recognizes one or more of these groups. All of the various lipid analogues tested served as substrates in both the trypanosomal and HeLa cell-free systems, suggesting that a precise lipid structure and stereochemistry are not essential for substrate recognition. However, an analogue containing a single C18:0 alkyl chain in place of sn-1,2-dipalmitoylglycerol proved to be a better substrate in the trypanosomal than in the HeLa cell-free system. These findings should have a bearing on the design of future generations of specific inhibitors of the trypanosomal glycosylphosphatidylinositol biosynthetic pathway.

    Original languageEnglish
    Pages (from-to)37147-37153
    Number of pages7
    JournalJournal of Biological Chemistry
    Volume277
    Issue number40
    DOIs
    Publication statusPublished - 4 Oct 2002

    Cite this