TY - JOUR
T1 - Standard and nonstandard extensions of Lie algebras
AU - Forte, Luca Antonio
AU - Sciarrino, A.
PY - 2006
Y1 - 2006
N2 - We study the problem of quadruple extensions of simple Lie algebras. We find that, adding a new simple root α+4, it is not possible to have an extended Kac-Moody algebra described by a Dynkin-Kac diagram with simple links and no loops between the dots, while it is possible if α+4 is a Borcherds imaginary simple root. We also comment on the root lattices of these new algebras. The folding procedure is applied to the simply laced triple extended Lie algebras, obtaining all the nonsimply laced ones. Nonstandard extension procedures for a class of Lie algebras are proposed. It is shown that the two-extensions of E8, with a dot simply linked to the Dynkin-Kac diagram of E9, are rank 10 subalgebras of E10. Finally the simple root systems of a set of rank 11 subalgebras of E11, containing as sub-algebra E10, are explicitly written.
AB - We study the problem of quadruple extensions of simple Lie algebras. We find that, adding a new simple root α+4, it is not possible to have an extended Kac-Moody algebra described by a Dynkin-Kac diagram with simple links and no loops between the dots, while it is possible if α+4 is a Borcherds imaginary simple root. We also comment on the root lattices of these new algebras. The folding procedure is applied to the simply laced triple extended Lie algebras, obtaining all the nonsimply laced ones. Nonstandard extension procedures for a class of Lie algebras are proposed. It is shown that the two-extensions of E8, with a dot simply linked to the Dynkin-Kac diagram of E9, are rank 10 subalgebras of E10. Finally the simple root systems of a set of rank 11 subalgebras of E11, containing as sub-algebra E10, are explicitly written.
UR - http://scitation.aip.org/content/aip/journal/jmp/47/1/10.1063/1.2162128
U2 - 10.1063/1.2162128
DO - 10.1063/1.2162128
M3 - Article
SN - 1089-7658
VL - 47
JO - Journal of Mathematical Physics
JF - Journal of Mathematical Physics
M1 - 013513
ER -