TY - JOUR
T1 - Steroid hormones and neurosteroids in normal and pathological aging of the nervous system
AU - Schumacher, M.
AU - Weill-Engerer, S.
AU - Liere, P.
AU - Robert, F.
AU - Franklin, R. J.M.
AU - Garcia-Segura, L. M.
AU - Lambert, J. J.
AU - Mayo, W.
AU - Melcangi, R. C.
AU - Parducz, A.
AU - Suter, U.
AU - Carelli, C.
AU - Baulieu, E. E.
AU - Akwa, Y.
PY - 2003/9
Y1 - 2003/9
N2 - Without medical progress, dementing diseases such as Alzheimer's disease will become one of the main causes of disability. Preventing or delaying them has thus become a real challenge for biomedical research. Steroids offer interesting therapeutical opportunities for promoting successful aging because of their pleiotropic effects in the nervous system: they regulate main neurotransmitter systems, promote the viability of neurons, play an important role in myelination and influence cognitive processes, in particular learning and memory. Preclinical research has provided evidence that the normally aging nervous system maintains some capacity for regeneration and that age-dependent changes in the nervous system and cognitive dysfunctions can be reversed to some extent by the administration of steroids. The aging nervous system also remains sensitive to the neuroprotective effects of steroids. In contrast to the large number of studies documenting beneficial effects of steroids on the nervous system in young and aged animals, the results from hormone replacement studies in the elderly are so far not conclusive. There is also little information concerning changes of steroid levels in the aging human brain. As steroids present in nervous tissues originate from the endocrine glands (steroid hormones) and from local synthesis (neurosteroids), changes in blood levels of steroids with age do not necessarily reflect changes in their brain levels. There is indeed strong evidence that neurosteroids are also synthesized in human brain and peripheral nerves. The development of a very sensitive and precise method for the analysis of steroids by gas chromatography/mass spectrometry (GC/MS) offers new possibilities for the study of neurosteroids. The concentrations of a range of neurosteroids have recently been measured in various brain regions of aged Alzheimer's disease patients and aged non-demented controls by GC/MS, providing reference values. In Alzheimer's patients, there was a general trend toward lower levels of neurosteroids in different brain regions, and neurosteroid levels were negatively correlated with two biochemical markers of Alzheimer's disease, the phosphorylated tau protein and the β-amyloid peptides. The metabolism of dehydroepiandrosterone has also been analyzed for the first time in the aging brain from Alzheimer patients and non-demented controls. The conversion of dehydroepiandrosterone to Δ5-androstene-3β,17β-diol and to 7α-OH-dehydroepiandrosterone occurred in frontal cortex, hippocampus, amygdala, cerebellum and striatum of both Alzheimer's patients and controls. The formation of these metabolites within distinct brain regions negatively correlated with the density of β-amyloid deposits.
AB - Without medical progress, dementing diseases such as Alzheimer's disease will become one of the main causes of disability. Preventing or delaying them has thus become a real challenge for biomedical research. Steroids offer interesting therapeutical opportunities for promoting successful aging because of their pleiotropic effects in the nervous system: they regulate main neurotransmitter systems, promote the viability of neurons, play an important role in myelination and influence cognitive processes, in particular learning and memory. Preclinical research has provided evidence that the normally aging nervous system maintains some capacity for regeneration and that age-dependent changes in the nervous system and cognitive dysfunctions can be reversed to some extent by the administration of steroids. The aging nervous system also remains sensitive to the neuroprotective effects of steroids. In contrast to the large number of studies documenting beneficial effects of steroids on the nervous system in young and aged animals, the results from hormone replacement studies in the elderly are so far not conclusive. There is also little information concerning changes of steroid levels in the aging human brain. As steroids present in nervous tissues originate from the endocrine glands (steroid hormones) and from local synthesis (neurosteroids), changes in blood levels of steroids with age do not necessarily reflect changes in their brain levels. There is indeed strong evidence that neurosteroids are also synthesized in human brain and peripheral nerves. The development of a very sensitive and precise method for the analysis of steroids by gas chromatography/mass spectrometry (GC/MS) offers new possibilities for the study of neurosteroids. The concentrations of a range of neurosteroids have recently been measured in various brain regions of aged Alzheimer's disease patients and aged non-demented controls by GC/MS, providing reference values. In Alzheimer's patients, there was a general trend toward lower levels of neurosteroids in different brain regions, and neurosteroid levels were negatively correlated with two biochemical markers of Alzheimer's disease, the phosphorylated tau protein and the β-amyloid peptides. The metabolism of dehydroepiandrosterone has also been analyzed for the first time in the aging brain from Alzheimer patients and non-demented controls. The conversion of dehydroepiandrosterone to Δ5-androstene-3β,17β-diol and to 7α-OH-dehydroepiandrosterone occurred in frontal cortex, hippocampus, amygdala, cerebellum and striatum of both Alzheimer's patients and controls. The formation of these metabolites within distinct brain regions negatively correlated with the density of β-amyloid deposits.
UR - http://www.scopus.com/inward/record.url?scp=10744229403&partnerID=8YFLogxK
U2 - 10.1016/j.pneurobio.2003.09.004
DO - 10.1016/j.pneurobio.2003.09.004
M3 - Review article
C2 - 14611864
AN - SCOPUS:10744229403
SN - 0301-0082
VL - 71
SP - 3
EP - 29
JO - Progress in neurobiology
JF - Progress in neurobiology
IS - 1
ER -