Stress distribution patterns at mini-implant site during retraction and intrusion - a three-dimensional finite element study

Gautham Sivamurthy (Lead / Corresponding author), Shantha Sundari

Research output: Contribution to journalArticle

9 Citations (Scopus)
94 Downloads (Pure)

Abstract

Background: The purpose of this study was to evaluate the stress patterns produced in mini-implant and alveolar bone, for various implant dimensions, under different directions of simulated orthodontic force, using a three-dimensional finite element method.
Methods: Eight finite element (FE) models of mini-implant and bone were generated with insertion angles of 30° and 60°, diameters of 1 and 1.3 mm, and lengths of 6 and 8 mm. A simulated constant orthodontic force of 2 N was applied to each of these FE models in three directions simulating anterior retraction, anterior intrusion and retraction, and molar intrusion.
Results: Comparison of the maximum von Mises stress in the mini-implant showed that the 1-mm diameter produced significantly high stress, and the amount of stress produced was more for a mini-implant inserted at an angle of 60°. The cortical bone showed that high stresses were generated for the 1-mm-diameter mini-implant and on increasing the insertion angulation from 30° to 60°, the stress produced increased as well. The comparison of von Mises stress in the cancellous bone was insignificant as the amount of stress transmitted was very low.
Conclusions: The 1-mm-diameter mini-implants are not safe to be used clinically for orthodontic anchorage. The 1.3 × 6 mm dimension mini-implants are recommended for use during anterior segment retraction and during simultaneous intrusion and retraction, and the 1.3 × 8 mm dimension mini-implant is recommended for use during molar intrusion. All mini-implants should be inserted at a 30° angle into the bone for reduced stress and improved stability.
Original languageEnglish
Article number4
Pages (from-to)1-11
Number of pages11
JournalProgress in Orthodontics
Volume17
DOIs
Publication statusPublished - 18 Jan 2016

Fingerprint

Orthodontics
Bone and Bones
Direction compound

Cite this

@article{b6e9144064084d209886c381421c250d,
title = "Stress distribution patterns at mini-implant site during retraction and intrusion - a three-dimensional finite element study",
abstract = "Background: The purpose of this study was to evaluate the stress patterns produced in mini-implant and alveolar bone, for various implant dimensions, under different directions of simulated orthodontic force, using a three-dimensional finite element method.Methods: Eight finite element (FE) models of mini-implant and bone were generated with insertion angles of 30° and 60°, diameters of 1 and 1.3 mm, and lengths of 6 and 8 mm. A simulated constant orthodontic force of 2 N was applied to each of these FE models in three directions simulating anterior retraction, anterior intrusion and retraction, and molar intrusion.Results: Comparison of the maximum von Mises stress in the mini-implant showed that the 1-mm diameter produced significantly high stress, and the amount of stress produced was more for a mini-implant inserted at an angle of 60°. The cortical bone showed that high stresses were generated for the 1-mm-diameter mini-implant and on increasing the insertion angulation from 30° to 60°, the stress produced increased as well. The comparison of von Mises stress in the cancellous bone was insignificant as the amount of stress transmitted was very low.Conclusions: The 1-mm-diameter mini-implants are not safe to be used clinically for orthodontic anchorage. The 1.3 × 6 mm dimension mini-implants are recommended for use during anterior segment retraction and during simultaneous intrusion and retraction, and the 1.3 × 8 mm dimension mini-implant is recommended for use during molar intrusion. All mini-implants should be inserted at a 30° angle into the bone for reduced stress and improved stability.",
author = "Gautham Sivamurthy and Shantha Sundari",
year = "2016",
month = "1",
day = "18",
doi = "10.1186/s40510-016-0117-1",
language = "English",
volume = "17",
pages = "1--11",
journal = "Progress in Orthodontics",
issn = "2196-1042",
publisher = "Springer",

}

TY - JOUR

T1 - Stress distribution patterns at mini-implant site during retraction and intrusion - a three-dimensional finite element study

AU - Sivamurthy, Gautham

AU - Sundari, Shantha

PY - 2016/1/18

Y1 - 2016/1/18

N2 - Background: The purpose of this study was to evaluate the stress patterns produced in mini-implant and alveolar bone, for various implant dimensions, under different directions of simulated orthodontic force, using a three-dimensional finite element method.Methods: Eight finite element (FE) models of mini-implant and bone were generated with insertion angles of 30° and 60°, diameters of 1 and 1.3 mm, and lengths of 6 and 8 mm. A simulated constant orthodontic force of 2 N was applied to each of these FE models in three directions simulating anterior retraction, anterior intrusion and retraction, and molar intrusion.Results: Comparison of the maximum von Mises stress in the mini-implant showed that the 1-mm diameter produced significantly high stress, and the amount of stress produced was more for a mini-implant inserted at an angle of 60°. The cortical bone showed that high stresses were generated for the 1-mm-diameter mini-implant and on increasing the insertion angulation from 30° to 60°, the stress produced increased as well. The comparison of von Mises stress in the cancellous bone was insignificant as the amount of stress transmitted was very low.Conclusions: The 1-mm-diameter mini-implants are not safe to be used clinically for orthodontic anchorage. The 1.3 × 6 mm dimension mini-implants are recommended for use during anterior segment retraction and during simultaneous intrusion and retraction, and the 1.3 × 8 mm dimension mini-implant is recommended for use during molar intrusion. All mini-implants should be inserted at a 30° angle into the bone for reduced stress and improved stability.

AB - Background: The purpose of this study was to evaluate the stress patterns produced in mini-implant and alveolar bone, for various implant dimensions, under different directions of simulated orthodontic force, using a three-dimensional finite element method.Methods: Eight finite element (FE) models of mini-implant and bone were generated with insertion angles of 30° and 60°, diameters of 1 and 1.3 mm, and lengths of 6 and 8 mm. A simulated constant orthodontic force of 2 N was applied to each of these FE models in three directions simulating anterior retraction, anterior intrusion and retraction, and molar intrusion.Results: Comparison of the maximum von Mises stress in the mini-implant showed that the 1-mm diameter produced significantly high stress, and the amount of stress produced was more for a mini-implant inserted at an angle of 60°. The cortical bone showed that high stresses were generated for the 1-mm-diameter mini-implant and on increasing the insertion angulation from 30° to 60°, the stress produced increased as well. The comparison of von Mises stress in the cancellous bone was insignificant as the amount of stress transmitted was very low.Conclusions: The 1-mm-diameter mini-implants are not safe to be used clinically for orthodontic anchorage. The 1.3 × 6 mm dimension mini-implants are recommended for use during anterior segment retraction and during simultaneous intrusion and retraction, and the 1.3 × 8 mm dimension mini-implant is recommended for use during molar intrusion. All mini-implants should be inserted at a 30° angle into the bone for reduced stress and improved stability.

U2 - 10.1186/s40510-016-0117-1

DO - 10.1186/s40510-016-0117-1

M3 - Article

VL - 17

SP - 1

EP - 11

JO - Progress in Orthodontics

JF - Progress in Orthodontics

SN - 2196-1042

M1 - 4

ER -