Structure of 2C-methyl-d-erythritol 2,4- cyclodiphosphate synthase: an essential enzyme for isoprenoid biosynthesis and target for antimicrobial drug development

Lauris E. Kemp, Charles S. Bond, William N. Hunter, Johann Deisenhofer (Editor)

    Research output: Contribution to journalArticle

    80 Citations (Scopus)

    Abstract

    The crystal structure of the zinc enzyme Escherichia coli 2C-methyl-d-erythritol 2,4-cyclodiphosphate synthase in complex with cytidine 5'-diphosphate and Mn2+ has been determined to 1.8-Å resolution. This enzyme is essential in E. coli and participates in the nonmevalonate pathway of isoprenoid biosynthesis, a critical pathway present in some bacterial and apicomplexans but distinct from that used by mammals. Our analysis reveals a homotrimer, built around a ß prism, carrying three active sites, each of which is formed in a cleft between pairs of subunits. Residues from two subunits recognize and bind the nucleotide in an active site that contains a Zn2+ with tetrahedral coordination. A Mn2+, with octahedral geometry, is positioned between the a and ß phosphates acting in concert with the Zn2+ to align and polarize the substrate for catalysis. A high degree of sequence conservation for the enzymes from E. coli, Plasmodium falciparum, and Mycobacterium tuberculosis suggests similarities in secondary structure, subunit fold, quaternary structure, and active sites. Our model will therefore serve as a template to facilitate the structure-based design of potential antimicrobial agents targeting two of the most serious human diseases, tuberculosis and malaria.
    Original languageEnglish
    Pages (from-to)6591-6596
    Number of pages6
    JournalProceedings of the National Academy of Sciences of the United States of America
    Volume99
    Issue number10
    DOIs
    Publication statusPublished - 2002

    Fingerprint Dive into the research topics of 'Structure of 2C-methyl-d-erythritol 2,4- cyclodiphosphate synthase: an essential enzyme for isoprenoid biosynthesis and target for antimicrobial drug development'. Together they form a unique fingerprint.

  • Cite this