Projects per year
Abstract
Glutathione synthetase catalyses the synthesis of the low molecular mass thiol glutathione from L-gamma-glutamyl-L-cysteine and glycine. We report the crystal structure of the dimeric enzyme from Trypanosoma brucei in complex with the product glutathione. The enzyme belongs to the ATP-grasp family, a group of enzymes known to undergo conformational changes upon ligand binding. The T brucei enzyme crystal structure presents two dimers in the asymmetric unit. The structure reveals variability in the order and position of a small domain, which forms a lid for the active site and serves to capture conformations likely to exist during the catalytic cycle. Comparisons with orthologous enzymes, in particular from Homo sapiens and Saccharomyces cerevisae, indicate a high degree of sequence and structure conservation in part of the active site. Structural differences that are observed between the orthologous enzymes are assigned to different ligand binding states since key residues are conserved. This suggests that the molecular determinants of ligand recognition and reactivity are highly conserved across species. We conclude that it would be difficult to target the parasite enzyme in preference to the host enzyme and therefore glutathione synthetase may not be a suitable target for antiparasitic drug discovery. (C) 2010 Elsevier B.V. All rights reserved.
Original language | English |
---|---|
Pages (from-to) | 93-99 |
Number of pages | 7 |
Journal | Molecular and Biochemical Parasitology |
Volume | 170 |
Issue number | 2 |
DOIs | |
Publication status | Published - Apr 2010 |
Keywords
- ATP-grasp
- Glutathione
- Glutathione synthetase
- Trypanosoma brucei
- Trypanothione
- X-ray structure
- ESCHERICHIA-COLI-B
- CRYSTAL-STRUCTURE
- TRYPANOTHIONE SYNTHETASE
- CRITHIDIA-FASCICULATA
- ANGSTROM RESOLUTION
- REDUCTASE
- PROTEINS
- DISCOVERY
- ALIGNMENT
- REVEALS
Fingerprint
Dive into the research topics of 'Structure of Trypanosoma brucei glutathione synthetase: domain and loop alterations in the catalytic cycle of a highly conserved enzyme'. Together they form a unique fingerprint.Projects
- 2 Finished
-
Aref#d: 19815. Wellcome Trust Centre for Drug Discovery (Strategic Award)
Fairlamb, A. (Investigator), Ferguson, M. (Investigator) & Frearson, J. (Investigator)
1/01/08 → 31/12/12
Project: Research
-
Aref#d: 19401. Structure, specificity and mechanism of biosynthetic enzymes in trypanosomatids and inhibitor discovery of essential microbial functions (Programme Grant)
Hunter, B. (Investigator)
1/11/07 → 31/12/13
Project: Research