TY - JOUR
T1 - Synaptic Loss, ER Stress and Neuro-Inflammation Emerge Late in the Lateral Temporal Cortex and Associate with Progressive Tau Pathology in Alzheimer’s Disease
AU - Buchanan, Heather
AU - Mackay, Murray
AU - Palmer, Kerri
AU - Tothová, Karolína
AU - Katsur, Miroslava
AU - Platt, Bettina
AU - Koss, David J.
N1 - Copyright:
© 2020, The Author(s).
PY - 2020/8/1
Y1 - 2020/8/1
N2 - The complex multifactorial nature of AD pathogenesis has been highlighted by evidence implicating additional neurodegenerative mechanisms, beyond that of amyloid-β (Aβ) and tau. To provide insight into cause and effect, we here investigated the temporal profile and associations of pathological changes in synaptic, endoplasmic reticulum (ER) stress and neuro-inflammatory markers. Quantifications were established via immunoblot and immunohistochemistry protocols in post-mortem lateral temporal cortex (n = 46). All measures were assessed according to diagnosis (non-AD vs. AD), neuropathological severity (low (Braak ≤ 2) vs. moderate (3–4) vs. severe (≥ 5)) and individual Braak stage, and were correlated with Aβ and tau pathology and cognitive scores. Postsynaptic PSD-95, but not presynaptic synaptophysin, was decreased in AD cases and demonstrated a progressive decline across disease severity and Braak stage, yet not with cognitive scores. Of all investigated ER stress markers, only phospho-protein kinase RNA-like ER kinase (p-PERK) correlated with Braak stage and was increased in diagnosed AD cases. A similar relationship was observed for the astrocytic glial fibrillary acidic protein (GFAP); however, the associated aquaporin 4 and microglial Iba1 remained unchanged. Pathological alterations in these markers preferentially correlated with measures of tau over those related to Aβ. Notably, GFAP also correlated strongly with Aβ markers and with all assessments of cognition. Lateral temporal cortex-associated synaptic, ER stress and neuro-inflammatory pathologies are here determined as late occurrences in AD progression, largely associated with tau pathology. Moreover, GFAP emerged as the most robust indicator of disease progression, tau/Aβ pathology, and cognitive impairment.
AB - The complex multifactorial nature of AD pathogenesis has been highlighted by evidence implicating additional neurodegenerative mechanisms, beyond that of amyloid-β (Aβ) and tau. To provide insight into cause and effect, we here investigated the temporal profile and associations of pathological changes in synaptic, endoplasmic reticulum (ER) stress and neuro-inflammatory markers. Quantifications were established via immunoblot and immunohistochemistry protocols in post-mortem lateral temporal cortex (n = 46). All measures were assessed according to diagnosis (non-AD vs. AD), neuropathological severity (low (Braak ≤ 2) vs. moderate (3–4) vs. severe (≥ 5)) and individual Braak stage, and were correlated with Aβ and tau pathology and cognitive scores. Postsynaptic PSD-95, but not presynaptic synaptophysin, was decreased in AD cases and demonstrated a progressive decline across disease severity and Braak stage, yet not with cognitive scores. Of all investigated ER stress markers, only phospho-protein kinase RNA-like ER kinase (p-PERK) correlated with Braak stage and was increased in diagnosed AD cases. A similar relationship was observed for the astrocytic glial fibrillary acidic protein (GFAP); however, the associated aquaporin 4 and microglial Iba1 remained unchanged. Pathological alterations in these markers preferentially correlated with measures of tau over those related to Aβ. Notably, GFAP also correlated strongly with Aβ markers and with all assessments of cognition. Lateral temporal cortex-associated synaptic, ER stress and neuro-inflammatory pathologies are here determined as late occurrences in AD progression, largely associated with tau pathology. Moreover, GFAP emerged as the most robust indicator of disease progression, tau/Aβ pathology, and cognitive impairment.
KW - Alzheimer’s disease
KW - Amyloid-β
KW - Neuro-inflammation
KW - Synapse
KW - Tau
KW - Unfolded protein response
UR - http://www.scopus.com/inward/record.url?scp=85086107840&partnerID=8YFLogxK
U2 - 10.1007/s12035-020-01950-1
DO - 10.1007/s12035-020-01950-1
M3 - Article
C2 - 32514860
AN - SCOPUS:85086107840
SN - 0893-7648
VL - 57
SP - 3258
EP - 3272
JO - Molecular Neurobiology
JF - Molecular Neurobiology
IS - 8
ER -