Targeting Bacillosamine Biosynthesis in Bacterial Pathogens: Development of Inhibitors to a Bacterial Amino-Sugar Acetyltransferase from Campylobacter jejuni

Joris W. De Schutter, James P. Morrison, Michael J. Morrison, Alessio Ciulli, Barbara Imperiali (Lead / Corresponding author)

Research output: Contribution to journalArticle

9 Citations (Scopus)
159 Downloads (Pure)

Abstract

The glycoproteins of selected microbial pathogens often include highly modified carbohydrates such as 2,4-diacetamidobacillosamine (diNAcBac). These glycoconjugates are involved in host-cell interactions and may be associated with the virulence of medically significant Gram-negative bacteria. In light of genetic studies demonstrating the attenuated virulence of bacterial strains in which modified carbohydrate biosynthesis enzymes have been knocked out, we are developing small molecule inhibitors of selected enzymes as tools to evaluate whether such compounds modulate virulence. We performed fragment-based and high-throughput screens against an amino-sugar acetyltransferase enzyme, PglD, involved in biosynthesis of UDP-diNAcBac in Campylobacter jejuni. Herein we report optimization of the hits into potent small molecule inhibitors (IC50 < 300 nM). Biophysical characterization shows that the best inhibitors are competitive with acetyl coenzyme A and an X-ray cocrystal structure reveals that binding is biased toward occupation of the adenine subpocket of the AcCoA binding site by an aromatic ring.

Original languageEnglish
Pages (from-to)2099-2118
Number of pages20
JournalJournal of Medicinal Chemistry
Volume60
Issue number5
Early online date9 Feb 2017
DOIs
Publication statusPublished - 9 Mar 2017

Keywords

  • Journal article

Fingerprint Dive into the research topics of 'Targeting Bacillosamine Biosynthesis in Bacterial Pathogens: Development of Inhibitors to a Bacterial Amino-Sugar Acetyltransferase from <i>Campylobacter jejuni</i>'. Together they form a unique fingerprint.

  • Cite this