Taurine deficiency as a driver of aging

Parminder Singh, Kishore Gollapalli, Stefano Mangiola, Daniela Schranner, Mohd Aslam Yusuf, Manish Chamoli, Sting L. Shi, Bruno Lopes Bastos, Tripti Nair, Annett Riermeier, Elena M. Vayndorf, Judy Z. Wu, Aishwarya Nilakhe, Christina Q. Nguyen, Michael Muir, Michael G. Kiflezghi, Anna Foulger, Alex Junker, Jack Devine, Kunal SharanShankar J. Chinta, Swati Rajput, Anand Rane, Philipp Baumert, Martin Schönfelder, Francescopaolo Iavarone, Giorgia di Lorenzo, Swati Kumari, Alka Gupta, Rajesh Sarkar, Costerwell Khyriem, Amanpreet S. Chawla, Ankur Sharma, Nazan Sarper, Naibedya Chattopadhyay, Bichitra K. Biswal, Carmine Settembre, Perumal Nagarajan, Kimara L. Targoff, Martin Picard, Sarika Gupta, Vidya Velagapudi, Anthony T. Papenfuss, Alaattin Kaya, Miguel Godinho Ferreira, Brian K. Kennedy, Julie K. Andersen, Gordon J. Lithgow, Abdullah Mahmood Ali, Arnab Mukhopadhyay, Aarno Palotie, Gabi Kastenmüller, Matt Kaeberlein, Henning Wackerhage, Bhupinder Pal, Vijay K. Yadav (Lead / Corresponding author)

Research output: Contribution to journalArticlepeer-review

66 Citations (Scopus)


Aging is associated with changes in circulating levels of various molecules, some of which remain undefined. We find that concentrations of circulating taurine decline with aging in mice, monkeys, and humans. A reversal of this decline through taurine supplementation increased the health span (the period of healthy living) and life span in mice and health span in monkeys. Mechanistically, taurine reduced cellular senescence, protected against telomerase deficiency, suppressed mitochondrial dysfunction, decreased DNA damage, and attenuated inflammaging. In humans, lower taurine concentrations correlated with several age-related diseases and taurine concentrations increased after acute endurance exercise. Thus, taurine deficiency may be a driver of aging because its reversal increases health span in worms, rodents, and primates and life span in worms and rodents. Clinical trials in humans seem warranted to test whether taurine deficiency might drive aging in humans.

Original languageEnglish
Article numbereabn9257
Number of pages12
Issue number6649
Publication statusPublished - 9 Jun 2023


  • Animals
  • Humans
  • Mice
  • Aging/blood
  • Cellular Senescence
  • Haplorhini
  • Longevity/drug effects
  • Taurine/blood
  • Dietary Supplements
  • DNA Damage/drug effects
  • Telomerase/metabolism

ASJC Scopus subject areas

  • General


Dive into the research topics of 'Taurine deficiency as a driver of aging'. Together they form a unique fingerprint.

Cite this