TY - JOUR
T1 - TGFβ1 evokes myoblast apoptotic response via a novel signaling pathway involving S1P transactivation upstream of Rho-kinase-2 activation
AU - Cencetti, Francesca
AU - Bernacchioni, Caterina
AU - Tonelli, Francesca
AU - Roberts, Edward
AU - Donati, Chiara
AU - Bruni, Paola
PY - 2013/11
Y1 - 2013/11
N2 - In view of its multiple detrimental effects, transforming growth factor ß1 (TGFß1) is recognized as critical negative regulator of skeletal muscle repair. Apoptosis of skeletal muscle precursor cells driven by TGFß1 contributes to the negative role exerted by the cytokine in tissue repair, although the underlying molecular mechanisms are still elusive. Herein we report the identification of a new signaling pathway, relying on Rho kinase-2 stimulation, subsequent to SMAD-dependent S1P up-regulation and transactivation via sphingosine kinase (SK)-2, that accounts for TGFß1-induced apoptosis in cultured myoblasts. S1P-specific gene silencing reduced by almost 50% activation of caspase-3 and poly-ADP ribosyl transferase cleavage elicited by TGFß1. Moreover, the selective S1P antagonist CYM50358 also reduced the TGFß1 proapoptotic effects. By employing pharmacological and molecular biological approaches, the involvement of SK2 and ROCK2 in the transmission of the TGFß1 apoptotic action was also demonstrated. These results reinforce the notion that the SK/S1P axis plays a fundamental role in TGFß1 mode of action in skeletal muscle cells and, by disclosing a novel mechanism by which TGFß1 exerts its harmful action, pinpoint new molecular targets that in principle could be beneficial in the treatment of several skeletal muscle disorders or aging-dependent muscle atrophy.
AB - In view of its multiple detrimental effects, transforming growth factor ß1 (TGFß1) is recognized as critical negative regulator of skeletal muscle repair. Apoptosis of skeletal muscle precursor cells driven by TGFß1 contributes to the negative role exerted by the cytokine in tissue repair, although the underlying molecular mechanisms are still elusive. Herein we report the identification of a new signaling pathway, relying on Rho kinase-2 stimulation, subsequent to SMAD-dependent S1P up-regulation and transactivation via sphingosine kinase (SK)-2, that accounts for TGFß1-induced apoptosis in cultured myoblasts. S1P-specific gene silencing reduced by almost 50% activation of caspase-3 and poly-ADP ribosyl transferase cleavage elicited by TGFß1. Moreover, the selective S1P antagonist CYM50358 also reduced the TGFß1 proapoptotic effects. By employing pharmacological and molecular biological approaches, the involvement of SK2 and ROCK2 in the transmission of the TGFß1 apoptotic action was also demonstrated. These results reinforce the notion that the SK/S1P axis plays a fundamental role in TGFß1 mode of action in skeletal muscle cells and, by disclosing a novel mechanism by which TGFß1 exerts its harmful action, pinpoint new molecular targets that in principle could be beneficial in the treatment of several skeletal muscle disorders or aging-dependent muscle atrophy.
UR - http://www.scopus.com/inward/record.url?scp=84887047652&partnerID=8YFLogxK
U2 - 10.1096/fj.13-228528
DO - 10.1096/fj.13-228528
M3 - Article
C2 - 23913862
AN - SCOPUS:84887047652
SN - 0892-6638
VL - 27
SP - 4532
EP - 4546
JO - FASEB Journal
JF - FASEB Journal
IS - 11
ER -