TGFβ1 evokes myoblast apoptotic response via a novel signaling pathway involving S1P transactivation upstream of Rho-kinase-2 activation

Francesca Cencetti, Caterina Bernacchioni, Francesca Tonelli, Edward Roberts, Chiara Donati, Paola Bruni

    Research output: Contribution to journalArticlepeer-review

    43 Citations (Scopus)

    Abstract

    In view of its multiple detrimental effects, transforming growth factor ß1 (TGFß1) is recognized as critical negative regulator of skeletal muscle repair. Apoptosis of skeletal muscle precursor cells driven by TGFß1 contributes to the negative role exerted by the cytokine in tissue repair, although the underlying molecular mechanisms are still elusive. Herein we report the identification of a new signaling pathway, relying on Rho kinase-2 stimulation, subsequent to SMAD-dependent S1P up-regulation and transactivation via sphingosine kinase (SK)-2, that accounts for TGFß1-induced apoptosis in cultured myoblasts. S1P-specific gene silencing reduced by almost 50% activation of caspase-3 and poly-ADP ribosyl transferase cleavage elicited by TGFß1. Moreover, the selective S1P antagonist CYM50358 also reduced the TGFß1 proapoptotic effects. By employing pharmacological and molecular biological approaches, the involvement of SK2 and ROCK2 in the transmission of the TGFß1 apoptotic action was also demonstrated. These results reinforce the notion that the SK/S1P axis plays a fundamental role in TGFß1 mode of action in skeletal muscle cells and, by disclosing a novel mechanism by which TGFß1 exerts its harmful action, pinpoint new molecular targets that in principle could be beneficial in the treatment of several skeletal muscle disorders or aging-dependent muscle atrophy.
    Original languageEnglish
    Pages (from-to)4532-4546
    Number of pages15
    JournalFASEB Journal
    Volume27
    Issue number11
    DOIs
    Publication statusPublished - Nov 2013

    Fingerprint

    Dive into the research topics of 'TGFβ1 evokes myoblast apoptotic response via a novel signaling pathway involving S1P transactivation upstream of Rho-kinase-2 activation'. Together they form a unique fingerprint.

    Cite this