Projects per year
Abstract
The families of protein tyrosine phosphatases (PTPs) and protein tyrosine kinases (PTKs) function in a coordinated manner to regulate signal transduction events that are critical for cellular homeostasis. Aberrant tyrosine phosphorylation, resulting from disruption of either PTP or PTK function, has been shown to be the cause of major human diseases, including cancer and diabetes. Consequently, the characterization of small-molecule inhibitors of these kinases and phosphatases may not only provide molecular probes with which to define the significance of particular signaling events, but also may have therapeutic implications. BAY-11-7082 is an anti-inflammatory compound that has been reported to inhibit IB kinase activity. The compound has an ,-unsaturated electrophilic center, which confers the property of being a Michael acceptor; this suggests that it may react with nucleophilic cysteine-containing proteins, such as PTPs. In this study, we demonstrated that BAY-11-7082 was a potent, irreversible inhibitor of PTPs. Using mass spectrometry, we have shown that BAY-11-7082 inactivated PTPs by forming a covalent adduct with the active-site cysteine. Administration of the compound caused an increase in protein tyrosine phosphorylation in RAW264 macrophages, similar to the effects of the generic PTP inhibitor sodium orthovanadate. These data illustrate that BAY-11-7082 is an effective pan-PTP inhibitor with cell permeability, revealing its potential as a new probe for chemical biology approaches to the study of PTP function. Furthermore, the data suggest that inhibition of PTP function may contribute to the many biological effects of BAY-11-7082 that have been reported to date.
Original language | English |
---|---|
Pages (from-to) | 2830-2841 |
Number of pages | 12 |
Journal | FEBS Journal |
Volume | 280 |
Issue number | 12 |
Early online date | 9 May 2013 |
DOIs | |
Publication status | Published - 2013 |
Keywords
- Michael acceptor
- BAY 11-7082
- MECHANISM
- PTP1B
- B-ALPHA PHOSPHORYLATION
- CANCER
- CRYSTAL-STRUCTURE
- kinase
- anti-inflammatory
- covalent inhibitor
- IDENTIFICATION
- REDOX REGULATION
- phosphatase
- EXPRESSION
- 1B
Fingerprint
Dive into the research topics of 'The anti-inflammatory compound BAY-11-7082 is a potent inhibitor of protein tyrosine phosphatases'. Together they form a unique fingerprint.Projects
- 2 Finished
-
Elucidation of Molecular Mechanisms that Activate the MyD88 Signaling Network (Senior Investigator Award)
Cohen, P. (Investigator)
1/04/13 → 31/03/18
Project: Research
-
Characterisation of Signal Transduction Pathways that Restrict Activation of the Innate Immune System to Prevent Inflammatory and Autoimmune Diseases (Programme Grant)
Cohen, P. (Investigator)
1/04/13 → 31/03/18
Project: Research