TY - JOUR
T1 - The Artificial Sweetener Splenda Promotes Gut Proteobacteria, Dysbiosis, and Myeloperoxidase Reactivity in Crohn's Disease-Like Ileitis
AU - Rodriguez-Palacios, Alexander
AU - Harding, Andrew
AU - Menghini, Paola
AU - Himmelman, Catherine
AU - Retuerto, Mauricio
AU - Nickerson, Kourtney P.
AU - Lam, Minh
AU - Croniger, Colleen M.
AU - McLean, Mairi H.
AU - Durum, Scott K.
AU - Pizarro, Theresa T.
AU - Ghannoum, Mahmoud A.
AU - Ilic, Sanja
AU - McDonald, Christine
AU - Cominelli, Fabio
PY - 2018/4/23
Y1 - 2018/4/23
N2 - Background Epidemiological studies indicate that the use of artificial sweeteners doubles the risk for Crohn's disease (CD). Herein, we experimentally quantified the impact of 6-week supplementation with a commercial sweetener (Splenda; ingredients sucralose maltodextrin, 1:99, w/w) on both the severity of CD-like ileitis and the intestinal microbiome alterations using SAMP1/YitFc (SAMP) mice. Methods Metagenomic shotgun DNA sequencing was first used to characterize the microbiome of ileitis-prone SAMP mice. Then, 16S rRNA microbiome sequencing, quantitative polymerase chain reaction, fluorescent in situ hybridization (FISH), bacterial culture, stereomicroscopy, histology, and myeloperoxidase (MPO) activity analyses were then implemented to compare the microbiome and ileitis phenotype in SAMP with that of control ileitis-free AKR/J mice after Splenda supplementation. Results Metagenomics indicated that SAMP mice have a gut microbial phenotype rich in Bacteroidetes, and experiments showed that Helicobacteraceae did not have an exacerbating effect on ileitis. Splenda did not increase the severity of (stereomicroscopic/histological) ileitis; however, biochemically, ileal MPO activity was increased in SAMP treated with Splenda compared with nonsupplemented mice (P < 0.022) and healthy AKR mice. Splenda promoted dysbiosis with expansion of Proteobacteria in all mice, and E. coli overgrowth with increased bacterial infiltration into the ileal lamina propria of SAMP mice. FISH showed increase malX gene-carrying bacterial clusters in the ilea of supplemented SAMP (but not AKR) mice. Conclusions Splenda promoted gut Proteobacteria, dysbiosis, and biochemical MPO reactivity in a spontaneous model of (Bacteroidetes-rich) ileal CD. Our results indicate that although Splenda may promote parallel microbiome alterations in CD-prone and healthy hosts, this did not result in elevated MPO levels in healthy mice, only CD-prone mice. The consumption of sucralose/maltodextrin-containing foods might exacerbate MPO intestinal reactivity only in individuals with a pro-inflammatory predisposition, such as CD.
AB - Background Epidemiological studies indicate that the use of artificial sweeteners doubles the risk for Crohn's disease (CD). Herein, we experimentally quantified the impact of 6-week supplementation with a commercial sweetener (Splenda; ingredients sucralose maltodextrin, 1:99, w/w) on both the severity of CD-like ileitis and the intestinal microbiome alterations using SAMP1/YitFc (SAMP) mice. Methods Metagenomic shotgun DNA sequencing was first used to characterize the microbiome of ileitis-prone SAMP mice. Then, 16S rRNA microbiome sequencing, quantitative polymerase chain reaction, fluorescent in situ hybridization (FISH), bacterial culture, stereomicroscopy, histology, and myeloperoxidase (MPO) activity analyses were then implemented to compare the microbiome and ileitis phenotype in SAMP with that of control ileitis-free AKR/J mice after Splenda supplementation. Results Metagenomics indicated that SAMP mice have a gut microbial phenotype rich in Bacteroidetes, and experiments showed that Helicobacteraceae did not have an exacerbating effect on ileitis. Splenda did not increase the severity of (stereomicroscopic/histological) ileitis; however, biochemically, ileal MPO activity was increased in SAMP treated with Splenda compared with nonsupplemented mice (P < 0.022) and healthy AKR mice. Splenda promoted dysbiosis with expansion of Proteobacteria in all mice, and E. coli overgrowth with increased bacterial infiltration into the ileal lamina propria of SAMP mice. FISH showed increase malX gene-carrying bacterial clusters in the ilea of supplemented SAMP (but not AKR) mice. Conclusions Splenda promoted gut Proteobacteria, dysbiosis, and biochemical MPO reactivity in a spontaneous model of (Bacteroidetes-rich) ileal CD. Our results indicate that although Splenda may promote parallel microbiome alterations in CD-prone and healthy hosts, this did not result in elevated MPO levels in healthy mice, only CD-prone mice. The consumption of sucralose/maltodextrin-containing foods might exacerbate MPO intestinal reactivity only in individuals with a pro-inflammatory predisposition, such as CD.
KW - artificial sweetener
KW - Bacteroidetes
KW - Crohn's disease
KW - myeloperoxidase activity
KW - Proteobacteria
UR - http://www.scopus.com/inward/record.url?scp=85045017596&partnerID=8YFLogxK
U2 - 10.1093/ibd/izy060
DO - 10.1093/ibd/izy060
M3 - Article
C2 - 29554272
AN - SCOPUS:85045017596
SN - 1078-0998
VL - 24
SP - 1005
EP - 1020
JO - Inflammatory Bowel Diseases
JF - Inflammatory Bowel Diseases
IS - 5
ER -