The Cell-Permeable Derivative of the Immunoregulatory Metabolite Itaconate, 4-Octyl Itaconate, Is Anti-Fibrotic in Systemic Sclerosis

John Henderson, Sharadha Dayalan Naidu, Albena T. Dinkova-Kostova, Stefan Przyborski, Richard Stratton, Steven O'Reilly (Lead / Corresponding author)

Research output: Contribution to journalArticlepeer-review

7 Citations (Scopus)
45 Downloads (Pure)

Abstract

Systemic sclerosis (SSc) is an autoimmune connective tissue disease that leads to skin fibrosis. Altered metabolism has recently been described in autoimmune diseases and SSc. Itaconate is a product of the Krebs cycle intermediate cis-aconitate and is an immunomodulator. This work examines the role of the cell-permeable derivative of itaconate, 4-octyl itaconate (4-OI), in SSc. SSc and healthy dermal fibroblasts were exposed to 4-OI. The levels of collagen Nrf2-target genes and pro-inflammatory cytokines interleukin 6 (IL-6) and monocyte chemotactic protein 1 (MCP-1) were determined. Levels of reactive oxygen species (ROS) as well as the gene expression of collagen and Cellular Communication Network Factor 2 (CCN2) were measured after transforming growth factor beta 1 (TGF-β1) stimulation in the presence or absence of 4-OI. Wild-type or Nrf2-knockout (Nrf2-KO) mouse embryonic fibroblasts (MEFs) were also treated with 4-OI to determine the role of Nrf2 in 4-OI-mediated effects. 4-OI reduced the levels of collagen in SSc dermal fibroblasts. Incubation with 4-OI led to activation of Nrf2 and its target genes heme oxygenase 1 (HO-1) and NAD(P)H quinone oxidoreductase 1 (NQO1). 4-OI activated antioxidant response element (ARE)-dependent gene expression, reduced inflammatory cytokine release and reduced TGF-β1-induced collagen and ROS production in dermal fibroblasts. The effects of 4-OI are dependent on Nrf2. The cell-permeable derivative of itaconate 4-OI is anti-fibrotic through upregulation of Nrf2 and could be a potential therapeutic option in an intractable disease.

Original languageEnglish
Article number2053
Number of pages10
JournalCells
Volume10
Issue number8
DOIs
Publication statusPublished - 10 Aug 2021

Keywords

  • Fibrosis
  • Itaconate
  • Metabolism
  • Nrf2
  • Systemic sclerosis

Fingerprint

Dive into the research topics of 'The Cell-Permeable Derivative of the Immunoregulatory Metabolite Itaconate, 4-Octyl Itaconate, Is Anti-Fibrotic in Systemic Sclerosis'. Together they form a unique fingerprint.

Cite this