Abstract
Background: The potential of graphene‑based materials to improve the physiomechanical properties of Portland cement‑based materials without compromising biocompatibility is of interest to dental researchers and remains to be discovered.
Aim: This study investigated the effects of adding graphene oxide nanoplatelets (GONPs) on the surface microhardness and biocompatibility of Portland cement.
Materials and Methods: Three prototype Portland cement powder formulations were prepared by adding 0, 1, and 3 wt % GONPs in powder form to Portland cement. Prototype cement specimens were in the form of disks, with a diameter of 10 mm and a thickness of 2 mm. In experiment 1, surface microhardness was measured using the through indenter viewing hardness tester, 20 surface hardness values were obtained from all specimens. In experiment 2, Balb/C 3T3 fibroblasts were cultured with the material disks and the viability of cells was evaluated using the 3‑(4,5‑dimethylthiazol‑2‑yl)‑2,5‑diphenyltetrazolium bromide assay.
Statistical Analysis: The data were analyzed using the analysis of variance followed by Dunnett test (α = 0.05) or Tukey test (α = 0.05).
Results: In response to material disks, the addition of 1 wt % GONPs had a proliferative effect on cells at day 3 and day 7 with a significant difference from the control. The addition of 3 wt % GONPs showed a remarkable increase in surface microhardness; however, it exhibited initial cytotoxicity.
Conclusions: The addition of 1 wt % GONPs to Portland cement improved surface microhardness without compromising biocompatibility; therefore, it has a greater potential for dental applications. The results of this work give other researchers leads in future assessments of this prototype material.
Aim: This study investigated the effects of adding graphene oxide nanoplatelets (GONPs) on the surface microhardness and biocompatibility of Portland cement.
Materials and Methods: Three prototype Portland cement powder formulations were prepared by adding 0, 1, and 3 wt % GONPs in powder form to Portland cement. Prototype cement specimens were in the form of disks, with a diameter of 10 mm and a thickness of 2 mm. In experiment 1, surface microhardness was measured using the through indenter viewing hardness tester, 20 surface hardness values were obtained from all specimens. In experiment 2, Balb/C 3T3 fibroblasts were cultured with the material disks and the viability of cells was evaluated using the 3‑(4,5‑dimethylthiazol‑2‑yl)‑2,5‑diphenyltetrazolium bromide assay.
Statistical Analysis: The data were analyzed using the analysis of variance followed by Dunnett test (α = 0.05) or Tukey test (α = 0.05).
Results: In response to material disks, the addition of 1 wt % GONPs had a proliferative effect on cells at day 3 and day 7 with a significant difference from the control. The addition of 3 wt % GONPs showed a remarkable increase in surface microhardness; however, it exhibited initial cytotoxicity.
Conclusions: The addition of 1 wt % GONPs to Portland cement improved surface microhardness without compromising biocompatibility; therefore, it has a greater potential for dental applications. The results of this work give other researchers leads in future assessments of this prototype material.
Original language | English |
---|---|
Pages (from-to) | 15-20 |
Number of pages | 6 |
Journal | Journal of Conservative Dentistry |
Volume | 23 |
Issue number | 1 |
Early online date | 10 Oct 2020 |
DOIs | |
Publication status | Published - 2020 |
Keywords
- Biocompatibility
- fibroblasts
- graphene
- hardness
- nanoplatelets
- Nanoplatelets
- Grapheme
- Fibroblasts
- Hardness
ASJC Scopus subject areas
- General Dentistry