The Genetics of Adverse Drug Outcomes in Type 2 Diabetes: A Systematic Review

Assefa M. Baye, Teferi G. Fanta, Moneeza K. Siddiqui, Adem Y. Dawed (Lead / Corresponding author)

Research output: Contribution to journalReview articlepeer-review

10 Citations (Scopus)
67 Downloads (Pure)


Background: Adverse drug reactions (ADR) are a major clinical problem accounting for significant hospital admission rates, morbidity, mortality, and health care costs. One-third of people with diabetes experience at least one ADR. However, there is notable interindividual heterogeneity resulting in patient harm and unnecessary medical costs. Genomics is at the forefront of research to understand interindividual variability, and there are many genotype-drug response associations in diabetes with inconsistent findings. Here, we conducted a systematic review to comprehensively examine and synthesize the effect of genetic polymorphisms on the incidence of ADRs of oral glucose-lowering drugs in people with type 2 diabetes. Methods: A literature search was made to identify articles that included specific results of research on genetic polymorphism and adverse effects associated with oral glucose-lowering drugs. The electronic search was carried out on 3rd October 2020, through Cochrane Library, PubMed, and Web of Science using keywords and MeSH terms. Result: Eighteen articles consisting of 10, 383 subjects were included in this review. Carriers of reduced-function alleles of organic cation transporter 1 (OCT 1, encoded by SLC22A1) or reduced expression alleles of plasma membrane monoamine transporter (PMAT, encoded by SLC29A4) or serotonin transporter (SERT, encoded by SLC6A4) were associated with increased incidence of metformin-related gastrointestinal (GI) adverse effects. These effects were shown to exacerbate by concomitant treatment with gut transporter inhibiting drugs. The CYP2C9 alleles, * 2 (rs1799853C>T) and * 3 (rs1057910A>C) that are predictive of low enzyme activity were more common in subjects who experienced hypoglycemia after treatment with sulfonylureas. However, there was no significant association between sulfonylurea-related hypoglycemia and genetic variants in the ATP-binding cassette transporter sub-family C member 8 (ABCC8)/Potassium Inwardly Rectifying Channel Subfamily J Member 11 (KCNJ11). Compared to the wild type, the low enzyme activity C allele at CYP2C8* 3 (rs1057910A>C) was associated with less weight gain whereas the C allele at rs6123045 in the NFATC2 gene was significantly associated with edema from rosiglitazone treatment. Conclusion: In spite of limited studies investigating genetics and ADR in diabetes, some convincing results are emerging. Genetic variants in genes encoding drug transporters and metabolizing enzymes are implicated in metformin-related GI adverse effects, and sulfonylurea-induced hypoglycemia, respectively. Further studies to investigate newer antidiabetic drugs such as DPP-4i, GLP-1RA, and SGLT2i are warranted. In addition, pharmacogenetic studies that account for race and ethnic differences are required.

Original languageEnglish
Article number675053
Number of pages12
JournalFrontiers in Genetics
Publication statusPublished - 14 Jun 2021


  • pharmacogenomics
  • type 2 diabetes
  • adverse drug outcomes
  • oral glucose-lowering drugs
  • gastrointestinal side effects
  • hypoglycemia
  • weight gain

ASJC Scopus subject areas

  • Genetics(clinical)
  • Genetics
  • Molecular Medicine


Dive into the research topics of 'The Genetics of Adverse Drug Outcomes in Type 2 Diabetes: A Systematic Review'. Together they form a unique fingerprint.

Cite this