The Hepatic Reductase Null (HRN™) and Reductase Conditional Null (RCN) mouse models as suitable tools to study metabolism, toxicity and carcinogenicity of environmental pollutants

Volker Arlt (Lead / Corresponding author), Colin J. Henderson, C. Roland Wolf, Marie Stiborová, David H. Phillips

    Research output: Contribution to journalArticle

    9 Citations (Scopus)

    Abstract

    The cytochrome P450 (P450) superfamily consists of a large number of haem-containing mono-oxygenases that play a pivotal role in the metabolism of many drugs and carcinogens. A number of gene knockout and transgenic mice have been developed to study the role of specific P450 isoenzymes in xenobiotic metabolism, but the functional redundancy inevitably found in the P450 gene superfamily make it difficult to determine the in vivo role of these enzymes in xenobiotic metabolism as a whole. Over ten years ago the Hepatic Reductase Null (HRN™) model was developed to overcome these limitations. In these mice cytochrome P450 oxidoreductase (POR), the electron donor to P450 enzymes, is deleted specifically in hepatocytes, resulting in the loss of essentially all hepatic P450 function. While the HRN model uses an hepatocyte-specific albumin promoter to drive POR deletion during mouse development to adulthood, adult Reductase Conditional Null (RCN) mice are entirely normal with respect to POR (and thus P450 function) until hepatic POR deletion is driven via a CYP1A1 promoter which is induced by treatment with the polycyclic aromatic hydrocarbon 3-methylcholanthrene, essentially recapitulating the phenotype of the HRN mouse. The HRN and RCN models have been used to study the metabolism and genotoxicity of a variety of environmental carcinogens including benzo[a]pyrene, aristolochic acid, 3-nitrobenzanthrone and 2-amino-1-methyl-6-phenylimiazo[4,5-b]pyridine and the results obtained are summarized in this review. For example, investigations of BaP metabolism in the HRN and RCN mice revealed an apparent paradox, whereby hepatic P450 enzymes appeared to be more important for detoxification of BaP in vivo, despite being involved in its metabolic activation in vitro. Cytochrome b5 is a microsomal haemoprotein which provides electrons (from cytochrome b5 reductase) to P450 enzymes; however, its role in carcinogen metabolism is still enigmatic. Therefore, a mouse line was generated with a conditional hepatic deletion of cytochrome b5 (HBN, Hepatic cytochrome b5 Null) that was also crossed with HRN mice to create a double conditional mutant, HBRN (Hepatic cytochrome b5/P450 Reductase Null), in which both enzymes are deleted specifically in the liver. The combination of the HRN, RCN, HBN and HBRN models provide a powerful approach to study the P450-dependent metabolism and (geno)toxicity of environmental carcinogens.
    Original languageEnglish
    Pages (from-to)548-562
    Number of pages15
    JournalToxicology Research
    Volume4
    Issue number3
    Early online date5 Nov 2014
    DOIs
    Publication statusPublished - 2015

    Fingerprint

    Environmental Pollutants
    Metabolism
    Toxicity
    Oxidoreductases
    Cytochromes b5
    Liver
    Cytochrome P-450 Enzyme System
    Environmental Carcinogens
    NADPH-Ferrihemoprotein Reductase
    Xenobiotics
    Carcinogens
    Hepatocytes
    Electrons
    Cytochrome Reductases
    Genes
    Oxygenases
    Gene Knockout Techniques
    Cytochrome P-450 CYP1A1
    Methylcholanthrene
    Benzo(a)pyrene

    Cite this

    @article{28226a58ee224d3b84ff49182e0d5a5d,
    title = "The Hepatic Reductase Null (HRN™) and Reductase Conditional Null (RCN) mouse models as suitable tools to study metabolism, toxicity and carcinogenicity of environmental pollutants",
    abstract = "The cytochrome P450 (P450) superfamily consists of a large number of haem-containing mono-oxygenases that play a pivotal role in the metabolism of many drugs and carcinogens. A number of gene knockout and transgenic mice have been developed to study the role of specific P450 isoenzymes in xenobiotic metabolism, but the functional redundancy inevitably found in the P450 gene superfamily make it difficult to determine the in vivo role of these enzymes in xenobiotic metabolism as a whole. Over ten years ago the Hepatic Reductase Null (HRN™) model was developed to overcome these limitations. In these mice cytochrome P450 oxidoreductase (POR), the electron donor to P450 enzymes, is deleted specifically in hepatocytes, resulting in the loss of essentially all hepatic P450 function. While the HRN model uses an hepatocyte-specific albumin promoter to drive POR deletion during mouse development to adulthood, adult Reductase Conditional Null (RCN) mice are entirely normal with respect to POR (and thus P450 function) until hepatic POR deletion is driven via a CYP1A1 promoter which is induced by treatment with the polycyclic aromatic hydrocarbon 3-methylcholanthrene, essentially recapitulating the phenotype of the HRN mouse. The HRN and RCN models have been used to study the metabolism and genotoxicity of a variety of environmental carcinogens including benzo[a]pyrene, aristolochic acid, 3-nitrobenzanthrone and 2-amino-1-methyl-6-phenylimiazo[4,5-b]pyridine and the results obtained are summarized in this review. For example, investigations of BaP metabolism in the HRN and RCN mice revealed an apparent paradox, whereby hepatic P450 enzymes appeared to be more important for detoxification of BaP in vivo, despite being involved in its metabolic activation in vitro. Cytochrome b5 is a microsomal haemoprotein which provides electrons (from cytochrome b5 reductase) to P450 enzymes; however, its role in carcinogen metabolism is still enigmatic. Therefore, a mouse line was generated with a conditional hepatic deletion of cytochrome b5 (HBN, Hepatic cytochrome b5 Null) that was also crossed with HRN mice to create a double conditional mutant, HBRN (Hepatic cytochrome b5/P450 Reductase Null), in which both enzymes are deleted specifically in the liver. The combination of the HRN, RCN, HBN and HBRN models provide a powerful approach to study the P450-dependent metabolism and (geno)toxicity of environmental carcinogens.",
    author = "Volker Arlt and Henderson, {Colin J.} and Wolf, {C. Roland} and Marie Stiborov{\'a} and Phillips, {David H.}",
    year = "2015",
    doi = "10.1039/C4TX00116H",
    language = "English",
    volume = "4",
    pages = "548--562",
    journal = "Toxicology Research",
    issn = "2045-452X",
    publisher = "Royal Society of Chemistry",
    number = "3",

    }

    The Hepatic Reductase Null (HRN™) and Reductase Conditional Null (RCN) mouse models as suitable tools to study metabolism, toxicity and carcinogenicity of environmental pollutants. / Arlt, Volker (Lead / Corresponding author); Henderson, Colin J.; Wolf, C. Roland; Stiborová, Marie; Phillips, David H.

    In: Toxicology Research, Vol. 4, No. 3, 2015, p. 548-562.

    Research output: Contribution to journalArticle

    TY - JOUR

    T1 - The Hepatic Reductase Null (HRN™) and Reductase Conditional Null (RCN) mouse models as suitable tools to study metabolism, toxicity and carcinogenicity of environmental pollutants

    AU - Arlt, Volker

    AU - Henderson, Colin J.

    AU - Wolf, C. Roland

    AU - Stiborová, Marie

    AU - Phillips, David H.

    PY - 2015

    Y1 - 2015

    N2 - The cytochrome P450 (P450) superfamily consists of a large number of haem-containing mono-oxygenases that play a pivotal role in the metabolism of many drugs and carcinogens. A number of gene knockout and transgenic mice have been developed to study the role of specific P450 isoenzymes in xenobiotic metabolism, but the functional redundancy inevitably found in the P450 gene superfamily make it difficult to determine the in vivo role of these enzymes in xenobiotic metabolism as a whole. Over ten years ago the Hepatic Reductase Null (HRN™) model was developed to overcome these limitations. In these mice cytochrome P450 oxidoreductase (POR), the electron donor to P450 enzymes, is deleted specifically in hepatocytes, resulting in the loss of essentially all hepatic P450 function. While the HRN model uses an hepatocyte-specific albumin promoter to drive POR deletion during mouse development to adulthood, adult Reductase Conditional Null (RCN) mice are entirely normal with respect to POR (and thus P450 function) until hepatic POR deletion is driven via a CYP1A1 promoter which is induced by treatment with the polycyclic aromatic hydrocarbon 3-methylcholanthrene, essentially recapitulating the phenotype of the HRN mouse. The HRN and RCN models have been used to study the metabolism and genotoxicity of a variety of environmental carcinogens including benzo[a]pyrene, aristolochic acid, 3-nitrobenzanthrone and 2-amino-1-methyl-6-phenylimiazo[4,5-b]pyridine and the results obtained are summarized in this review. For example, investigations of BaP metabolism in the HRN and RCN mice revealed an apparent paradox, whereby hepatic P450 enzymes appeared to be more important for detoxification of BaP in vivo, despite being involved in its metabolic activation in vitro. Cytochrome b5 is a microsomal haemoprotein which provides electrons (from cytochrome b5 reductase) to P450 enzymes; however, its role in carcinogen metabolism is still enigmatic. Therefore, a mouse line was generated with a conditional hepatic deletion of cytochrome b5 (HBN, Hepatic cytochrome b5 Null) that was also crossed with HRN mice to create a double conditional mutant, HBRN (Hepatic cytochrome b5/P450 Reductase Null), in which both enzymes are deleted specifically in the liver. The combination of the HRN, RCN, HBN and HBRN models provide a powerful approach to study the P450-dependent metabolism and (geno)toxicity of environmental carcinogens.

    AB - The cytochrome P450 (P450) superfamily consists of a large number of haem-containing mono-oxygenases that play a pivotal role in the metabolism of many drugs and carcinogens. A number of gene knockout and transgenic mice have been developed to study the role of specific P450 isoenzymes in xenobiotic metabolism, but the functional redundancy inevitably found in the P450 gene superfamily make it difficult to determine the in vivo role of these enzymes in xenobiotic metabolism as a whole. Over ten years ago the Hepatic Reductase Null (HRN™) model was developed to overcome these limitations. In these mice cytochrome P450 oxidoreductase (POR), the electron donor to P450 enzymes, is deleted specifically in hepatocytes, resulting in the loss of essentially all hepatic P450 function. While the HRN model uses an hepatocyte-specific albumin promoter to drive POR deletion during mouse development to adulthood, adult Reductase Conditional Null (RCN) mice are entirely normal with respect to POR (and thus P450 function) until hepatic POR deletion is driven via a CYP1A1 promoter which is induced by treatment with the polycyclic aromatic hydrocarbon 3-methylcholanthrene, essentially recapitulating the phenotype of the HRN mouse. The HRN and RCN models have been used to study the metabolism and genotoxicity of a variety of environmental carcinogens including benzo[a]pyrene, aristolochic acid, 3-nitrobenzanthrone and 2-amino-1-methyl-6-phenylimiazo[4,5-b]pyridine and the results obtained are summarized in this review. For example, investigations of BaP metabolism in the HRN and RCN mice revealed an apparent paradox, whereby hepatic P450 enzymes appeared to be more important for detoxification of BaP in vivo, despite being involved in its metabolic activation in vitro. Cytochrome b5 is a microsomal haemoprotein which provides electrons (from cytochrome b5 reductase) to P450 enzymes; however, its role in carcinogen metabolism is still enigmatic. Therefore, a mouse line was generated with a conditional hepatic deletion of cytochrome b5 (HBN, Hepatic cytochrome b5 Null) that was also crossed with HRN mice to create a double conditional mutant, HBRN (Hepatic cytochrome b5/P450 Reductase Null), in which both enzymes are deleted specifically in the liver. The combination of the HRN, RCN, HBN and HBRN models provide a powerful approach to study the P450-dependent metabolism and (geno)toxicity of environmental carcinogens.

    U2 - 10.1039/C4TX00116H

    DO - 10.1039/C4TX00116H

    M3 - Article

    VL - 4

    SP - 548

    EP - 562

    JO - Toxicology Research

    JF - Toxicology Research

    SN - 2045-452X

    IS - 3

    ER -