TY - JOUR
T1 - The human gut symbiont Ruminococcus gnavus shows specificity to blood group A antigen during mucin glycan foraging
T2 - Implication for niche colonisation in the gastrointestinal tract
AU - Wu, Haiyang
AU - Crost, Emmanuelle H.
AU - Owen, C. David
AU - van Bakel, Wouter
AU - Gascueña, Ana Martínez
AU - Latousakis, Dimitrios
AU - Hicks, Thomas
AU - Walpole, Samuel
AU - Urbanowicz, Paulina A.
AU - Ndeh, Didier
AU - Monaco, Serena
AU - Salom, Laura Sánchez
AU - Griffiths, Ryan
AU - Reynolds, Raven S.
AU - Colvile, Anna
AU - Spencer, Daniel I. R.
AU - Walsh, Martin
AU - Angulo, Jesus
AU - Juge, Nathalie
N1 - Copyright:
© 2021 Wu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2021/12/22
Y1 - 2021/12/22
N2 - The human gut symbiont Ruminococcus gnavus displays strain-specific repertoires of glycoside hydrolases (GHs) contributing to its spatial location in the gut. Sequence similarity network analysis identified strain-specific differences in blood-group endo-β-1,4-galactosidase belonging to the GH98 family. We determined the substrate and linkage specificities of GH98 from R. gnavus ATCC 29149, RgGH98, against a range of defined oligosaccharides and glycoconjugates including mucin. We showed by HPAEC-PAD and LC-FD-MS/MS that RgGH98 is specific for blood group A tetrasaccharide type II (BgA II). Isothermal titration calorimetry (ITC) and saturation transfer difference (STD) NMR confirmed RgGH98 affinity for blood group A over blood group B and H antigens. The molecular basis of RgGH98 strict specificity was further investigated using a combination of glycan microarrays, site-directed mutagenesis, and X-ray crystallography. The crystal structures of RgGH98 in complex with BgA trisaccharide (BgAtri) and of RgGH98 E411A with BgA II revealed a dedicated hydrogen network of residues, which were shown by site-directed mutagenesis to be critical to the recognition of the BgA epitope. We demonstrated experimentally that RgGH98 is part of an operon of 10 genes that is overexpresssed in vitro when R. gnavus ATCC 29149 is grown on mucin as sole carbon source as shown by RNAseq analysis and RT-qPCR confirmed RgGH98 expression on BgA II growth. Using MALDI-ToF MS, we showed that RgGH98 releases BgAtri from mucin and that pretreatment of mucin with RgGH98 confered R. gnavus E1 the ability to grow, by enabling the E1 strain to metabolise BgAtri and access the underlying mucin glycan chain. These data further support that the GH repertoire of R. gnavus strains enable them to colonise different nutritional niches in the human gut and has potential applications in diagnostic and therapeutics against infection.
AB - The human gut symbiont Ruminococcus gnavus displays strain-specific repertoires of glycoside hydrolases (GHs) contributing to its spatial location in the gut. Sequence similarity network analysis identified strain-specific differences in blood-group endo-β-1,4-galactosidase belonging to the GH98 family. We determined the substrate and linkage specificities of GH98 from R. gnavus ATCC 29149, RgGH98, against a range of defined oligosaccharides and glycoconjugates including mucin. We showed by HPAEC-PAD and LC-FD-MS/MS that RgGH98 is specific for blood group A tetrasaccharide type II (BgA II). Isothermal titration calorimetry (ITC) and saturation transfer difference (STD) NMR confirmed RgGH98 affinity for blood group A over blood group B and H antigens. The molecular basis of RgGH98 strict specificity was further investigated using a combination of glycan microarrays, site-directed mutagenesis, and X-ray crystallography. The crystal structures of RgGH98 in complex with BgA trisaccharide (BgAtri) and of RgGH98 E411A with BgA II revealed a dedicated hydrogen network of residues, which were shown by site-directed mutagenesis to be critical to the recognition of the BgA epitope. We demonstrated experimentally that RgGH98 is part of an operon of 10 genes that is overexpresssed in vitro when R. gnavus ATCC 29149 is grown on mucin as sole carbon source as shown by RNAseq analysis and RT-qPCR confirmed RgGH98 expression on BgA II growth. Using MALDI-ToF MS, we showed that RgGH98 releases BgAtri from mucin and that pretreatment of mucin with RgGH98 confered R. gnavus E1 the ability to grow, by enabling the E1 strain to metabolise BgAtri and access the underlying mucin glycan chain. These data further support that the GH repertoire of R. gnavus strains enable them to colonise different nutritional niches in the human gut and has potential applications in diagnostic and therapeutics against infection.
KW - admissibility
KW - communication
KW - forensic science
KW - novel science
UR - http://www.scopus.com/inward/record.url?scp=85122329203&partnerID=8YFLogxK
U2 - 10.1371/journal.pbio.3001498
DO - 10.1371/journal.pbio.3001498
M3 - Article
C2 - 34936658
AN - SCOPUS:85122329203
SN - 1544-9173
VL - 19
JO - PLoS Biology
JF - PLoS Biology
IS - 12
M1 - e3001498
ER -