The influence of defects on response speed of high gain two-beam photogating in a-Si : H PIN structures

J. H. Zollondz, S. Reynolds, C. Main, V. Smirnov, I. Zrinscak

    Research output: Contribution to journalArticlepeer-review

    1 Citation (Scopus)

    Abstract

    The dynamic characteristics of two-beam photogating in reverse biased a-Si:H pin devices have been investigated. The photogated current switch-on rise time scales approximately inversely with probe beam flux, suggesting the supply and subsequent capture of holes generated in the i-layer by the probe beam is the rate-limiting step. This interpretation leads to an estimated i-layer trap density of View the MathML source. The switch-off decay is complex, but contains an exponential component with a time constant of 2 s independent of probe beam flux. A mechanism involving emission and subsequent extraction or recombination of holes trapped in a narrow energy range of states some 0.7 eV deep is proposed to account for this. These findings are compared with independent data from dark current, transient photocurrent and constant photocurrent measurements.
    Original languageEnglish
    Pages (from-to)594-598
    Number of pages5
    JournalJournal of Non-Crystalline Solids
    Volume299-302
    Issue numberPart 1
    DOIs
    Publication statusPublished - Apr 2002

    Fingerprint Dive into the research topics of 'The influence of defects on response speed of high gain two-beam photogating in a-Si : H PIN structures'. Together they form a unique fingerprint.

    Cite this