The kink-turn in the structural biology of RNA

Lin Huang, David M. J. Lilley (Lead / Corresponding author)

Research output: Contribution to journalReview article

5 Citations (Scopus)

Abstract

The kink-turn (k-turn) is a widespread structural motif found in functional RNA species. It typically comprises a three-nucleotide bulge followed by tandem trans sugar edge-Hoogsteen G:A base pairs. It introduces a sharp kink into the axis of duplex RNA, juxtaposing the minor grooves. Cross-strand H-bonds form at the interface, accepted by the conserved adenine nucleobases of the G:A basepairs. Alternative acceptors for one of these divides the k-turns into two conformational classes N3 and N1. The base pair that follows the G:A pairs (3b:3n) determines which conformation is adopted by a given k-turn. k-turns often mediate tertiary contacts in folded RNA species and frequently bind proteins. Common k-turn binding proteins include members of the L7Ae family, such as the human 15·5k protein. A recognition helix within these proteins binds in the widened major groove on the outside of the k-turn, that makes specific H-bonds with the conserved guanine nucleobases of the G:A pairs. L7Ae binds with extremely high affinity, and single-molecule data are consistent with folding by conformational selection. The standard, simple k-turn can be elaborated in a variety of ways, that include the complex k-turns and the k-junctions. In free solution in the absence of added metal ions or protein k-turns do not adopt the tightly-kinked conformation. They undergo folding by the binding of proteins, by the formation of tertiary contacts, and some (but not all) will fold on the addition of metal ions. Whether or not folding occurs in the presence of metal ions depends on local sequence, including the 3b:3n position, and the -1b:-1n position (5' to the bulge). In most cases -1b:-1n = C:G, so that the 3b:3n position is critical since it determines both folding properties and conformation. In general, the selection of these sequence matches a given k-turn to its biological requirements. The k-turn structure is now very well understood, to the point at which they can be used as a building block for the formation of RNA nano-objects, including triangles and squares.

Original languageEnglish
Article numbere5
Pages (from-to)1-32
Number of pages32
JournalQuarterly Reviews of Biophysics
Volume51
Early online date12 Apr 2018
DOIs
Publication statusPublished - 2018

Fingerprint

RNA
Metals
Ions
Base Pairing
Carrier Proteins
Proteins
Guanine
Adenine
Nucleotides

Keywords

  • Animals
  • Humans
  • Hydrogen Bonding
  • Metals/chemistry
  • Models, Molecular
  • Protein Binding
  • RNA/chemistry
  • RNA Folding

Cite this

@article{55d8f757a2934781b8c8304290b9fc3a,
title = "The kink-turn in the structural biology of RNA",
abstract = "The kink-turn (k-turn) is a widespread structural motif found in functional RNA species. It typically comprises a three-nucleotide bulge followed by tandem trans sugar edge-Hoogsteen G:A base pairs. It introduces a sharp kink into the axis of duplex RNA, juxtaposing the minor grooves. Cross-strand H-bonds form at the interface, accepted by the conserved adenine nucleobases of the G:A basepairs. Alternative acceptors for one of these divides the k-turns into two conformational classes N3 and N1. The base pair that follows the G:A pairs (3b:3n) determines which conformation is adopted by a given k-turn. k-turns often mediate tertiary contacts in folded RNA species and frequently bind proteins. Common k-turn binding proteins include members of the L7Ae family, such as the human 15·5k protein. A recognition helix within these proteins binds in the widened major groove on the outside of the k-turn, that makes specific H-bonds with the conserved guanine nucleobases of the G:A pairs. L7Ae binds with extremely high affinity, and single-molecule data are consistent with folding by conformational selection. The standard, simple k-turn can be elaborated in a variety of ways, that include the complex k-turns and the k-junctions. In free solution in the absence of added metal ions or protein k-turns do not adopt the tightly-kinked conformation. They undergo folding by the binding of proteins, by the formation of tertiary contacts, and some (but not all) will fold on the addition of metal ions. Whether or not folding occurs in the presence of metal ions depends on local sequence, including the 3b:3n position, and the -1b:-1n position (5' to the bulge). In most cases -1b:-1n = C:G, so that the 3b:3n position is critical since it determines both folding properties and conformation. In general, the selection of these sequence matches a given k-turn to its biological requirements. The k-turn structure is now very well understood, to the point at which they can be used as a building block for the formation of RNA nano-objects, including triangles and squares.",
keywords = "Animals, Humans, Hydrogen Bonding, Metals/chemistry, Models, Molecular, Protein Binding, RNA/chemistry, RNA Folding",
author = "Lin Huang and Lilley, {David M. J.}",
note = "We thank our collaborators, especially Xuesong Shi, Dan Herschlag and Benoit Masquida, and Cancer Research UK, the Wellcome Trust and the HFLP for funding",
year = "2018",
doi = "10.1017/S0033583518000033",
language = "English",
volume = "51",
pages = "1--32",
journal = "Quarterly Reviews of Biophysics",
issn = "0033-5835",
publisher = "Cambridge University Press",

}

The kink-turn in the structural biology of RNA. / Huang, Lin; Lilley, David M. J. (Lead / Corresponding author).

In: Quarterly Reviews of Biophysics, Vol. 51, e5, 2018, p. 1-32.

Research output: Contribution to journalReview article

TY - JOUR

T1 - The kink-turn in the structural biology of RNA

AU - Huang, Lin

AU - Lilley, David M. J.

N1 - We thank our collaborators, especially Xuesong Shi, Dan Herschlag and Benoit Masquida, and Cancer Research UK, the Wellcome Trust and the HFLP for funding

PY - 2018

Y1 - 2018

N2 - The kink-turn (k-turn) is a widespread structural motif found in functional RNA species. It typically comprises a three-nucleotide bulge followed by tandem trans sugar edge-Hoogsteen G:A base pairs. It introduces a sharp kink into the axis of duplex RNA, juxtaposing the minor grooves. Cross-strand H-bonds form at the interface, accepted by the conserved adenine nucleobases of the G:A basepairs. Alternative acceptors for one of these divides the k-turns into two conformational classes N3 and N1. The base pair that follows the G:A pairs (3b:3n) determines which conformation is adopted by a given k-turn. k-turns often mediate tertiary contacts in folded RNA species and frequently bind proteins. Common k-turn binding proteins include members of the L7Ae family, such as the human 15·5k protein. A recognition helix within these proteins binds in the widened major groove on the outside of the k-turn, that makes specific H-bonds with the conserved guanine nucleobases of the G:A pairs. L7Ae binds with extremely high affinity, and single-molecule data are consistent with folding by conformational selection. The standard, simple k-turn can be elaborated in a variety of ways, that include the complex k-turns and the k-junctions. In free solution in the absence of added metal ions or protein k-turns do not adopt the tightly-kinked conformation. They undergo folding by the binding of proteins, by the formation of tertiary contacts, and some (but not all) will fold on the addition of metal ions. Whether or not folding occurs in the presence of metal ions depends on local sequence, including the 3b:3n position, and the -1b:-1n position (5' to the bulge). In most cases -1b:-1n = C:G, so that the 3b:3n position is critical since it determines both folding properties and conformation. In general, the selection of these sequence matches a given k-turn to its biological requirements. The k-turn structure is now very well understood, to the point at which they can be used as a building block for the formation of RNA nano-objects, including triangles and squares.

AB - The kink-turn (k-turn) is a widespread structural motif found in functional RNA species. It typically comprises a three-nucleotide bulge followed by tandem trans sugar edge-Hoogsteen G:A base pairs. It introduces a sharp kink into the axis of duplex RNA, juxtaposing the minor grooves. Cross-strand H-bonds form at the interface, accepted by the conserved adenine nucleobases of the G:A basepairs. Alternative acceptors for one of these divides the k-turns into two conformational classes N3 and N1. The base pair that follows the G:A pairs (3b:3n) determines which conformation is adopted by a given k-turn. k-turns often mediate tertiary contacts in folded RNA species and frequently bind proteins. Common k-turn binding proteins include members of the L7Ae family, such as the human 15·5k protein. A recognition helix within these proteins binds in the widened major groove on the outside of the k-turn, that makes specific H-bonds with the conserved guanine nucleobases of the G:A pairs. L7Ae binds with extremely high affinity, and single-molecule data are consistent with folding by conformational selection. The standard, simple k-turn can be elaborated in a variety of ways, that include the complex k-turns and the k-junctions. In free solution in the absence of added metal ions or protein k-turns do not adopt the tightly-kinked conformation. They undergo folding by the binding of proteins, by the formation of tertiary contacts, and some (but not all) will fold on the addition of metal ions. Whether or not folding occurs in the presence of metal ions depends on local sequence, including the 3b:3n position, and the -1b:-1n position (5' to the bulge). In most cases -1b:-1n = C:G, so that the 3b:3n position is critical since it determines both folding properties and conformation. In general, the selection of these sequence matches a given k-turn to its biological requirements. The k-turn structure is now very well understood, to the point at which they can be used as a building block for the formation of RNA nano-objects, including triangles and squares.

KW - Animals

KW - Humans

KW - Hydrogen Bonding

KW - Metals/chemistry

KW - Models, Molecular

KW - Protein Binding

KW - RNA/chemistry

KW - RNA Folding

U2 - 10.1017/S0033583518000033

DO - 10.1017/S0033583518000033

M3 - Review article

C2 - 30912490

VL - 51

SP - 1

EP - 32

JO - Quarterly Reviews of Biophysics

JF - Quarterly Reviews of Biophysics

SN - 0033-5835

M1 - e5

ER -