The molecular physiology of hepatic nuclear factor 3 in the regulation of gluconeogenesis

Jen-Chywan Wang, John M. Stafford, Donald K. Scott, Calum Sutherland, Daryl K. Granner

    Research output: Contribution to journalArticlepeer-review

    56 Citations (Scopus)


    Glucocorticoids stimulate gluconeogenesis by increasing the rate of transcription of genes that encode gluconeogenic enzymes such as phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase. Previous studies have shown that hepatic nuclear factor 3 (HNF3) is required as an accessory factor for several glucocorticoid-stimulated genes, including PEPCK. Here, we show that adenovirus-mediated expression of an HNP3 beta protein with a deleted C-terminal transactivation domain (HNF3 beta Delta C) reduces the glucocorticoid-induced expression of the PEPCK and glucose-6-phosphatase genes in H4IIE hepatoma cells. Furthermore, expression of this truncated HNF3 protein results in a proportionate reduction of glucocorticoid-stimulated glucose production from lactate and pyruvate in these cells. The expression of HNF3 beta Delta N, in which the N-terminal transactivation domain is deleted, does not exhibit any of these effects. These results provide direct evidence that members of the HNF3 family are required for proper regulation of hepatic gluconeogenesis. Modulation of the function of the HNF3 family of proteins might be used to reduce the excessive hepatic production of glucose that is an important pathophysiologic feature of diabetes mellitus.

    Original languageEnglish
    Pages (from-to)14717-14721
    Number of pages5
    JournalJournal of Biological Chemistry
    Issue number19
    Publication statusPublished - 2000


    Dive into the research topics of 'The molecular physiology of hepatic nuclear factor 3 in the regulation of gluconeogenesis'. Together they form a unique fingerprint.

    Cite this