Abstract
Beall C, Ashford ML, McCrimmon RJ. The physiology and pathophysiology of the neural control of the counterregulatory response. Am J Physiol Regul Integr Comp Physiol 302: R215-R223, 2012. First published November 9, 2011; doi:10.1152/ajpregu.00531.2011.-Despite significant technological and pharmacological advancements, insulin replacement therapy fails to adequately replicate beta-cell function, and so glucose control in type 1 diabetes mellitus (T1D) is frequently erratic, leading to periods of hypoglycemia. Moreover, the counterregulatory response (CRR) to falling blood glucose is impaired in diabetes, leading to an increased risk of severe hypoglycemia. It is now clear that the brain plays a significant role in the development of defective glucose counterregulation and impaired hypoglycemia awareness in diabetes. In this review, the basic intracellular glucose-sensing mechanisms are discussed, as well as the neural networks that respond to and coordinate the body's response to a hypoglycemic challenge. Subsequently, we discuss how the body responds to repeated hypoglycemia and how these adaptations may explain, at least in part, the development of impaired glucose counterregulation in diabetes.
Original language | English |
---|---|
Pages (from-to) | R215-R223 |
Number of pages | 9 |
Journal | American Journal of Physiology - Regulatory, Integrative and Comparative Physiology (AJP - Regulatory, Integrative and Comparative Physiology) |
Volume | 302 |
Issue number | 2 |
DOIs | |
Publication status | Published - Jan 2012 |
Keywords
- hypoglycemia
- hypothalamus
- hypoglycemia unawareness
- epinephrine
- glucagon
- ACTIVATED PROTEIN-KINASE
- SENSITIVE K+ CHANNELS
- INSULIN-INDUCED HYPOGLYCEMIA
- SEROTONIN REUPTAKE INHIBITOR
- VENTROMEDIAL HYPOTHALAMUS CONTRIBUTES
- CORTICOTROPIN-RELEASING HORMONE
- PANCREATIC GLUCAGON-SECRETION
- DEPENDENT DIABETES-MELLITUS
- ALPHA-CELL RESPONSE
- RECURRENT HYPOGLYCEMIA