TY - JOUR
T1 - The pleckstrin homology domains of protein kinase B and GRP1 (general receptor for phosphoinositides-1) are sensitive and selective probes for the cellular detection of phosphatidylinositol 3,4-bisphosphate and/or phosphatidylinositol 3,4,5-trisphosphate in vivo
AU - Gray, Alexander
AU - Van Der Kaay, Jeroen
AU - Downes, C. Peter
PY - 1999/12/15
Y1 - 1999/12/15
N2 - We have tested the binding specificities of the pleckstrin homology (PH) domains of protein kinase B (PKB) and GRP1 (general receptor for phosphoinositides-1), expressed as green fluorescent protein (GFP) fusion proteins [PH(PKB)GFP and PH(GRP1)GFP respectively] in HEK 293 cells and Swiss 3T3 cells, using confocal microscopy. Stimulation of HEK 293 cells with insulin caused a small, but sustained, increase in PtdIns(3,4,5)P3 levels, detected using a radioligand displacement assay, which was mirrored by the translocation of PH(PKB)GFP and PH(GRP1)GFP from the cytosol to the plasma membrane of live, transfected cells. Similar results were Swiss 3T3 cells stimulated with platelet-derived growth factor (PDGF) and expressing either PH(PKB)GFP or PH(GRP1)-GFP. Biochemical analyses confirmed the accumulation of both PtdIns(3,4,5)P3 and PtdIns(3,4)P2 in response to PDGF, but only the latter was present at increased levels in Swiss 3T3 cells 30 min after an oxidative stress (1 mM H2O2). Concomitantly, only PH(PKB)GFP, and not PH(GRP1)GFP, was localized at plasma membranes after 30 min of treatment with H2O2. The fusion proteins appear accurately to report the spatial and temporal distribution of PtdIns(3,4,5)P3 and PtdIns(3,4)P2 in intact cells. These results establish the lipid selectivity of these PH domains in vivo, and further emphasize the overlapping, but distinct, second messenger roles of PtdIns(3,4,5)P3 and PtdIns(3,4)P2.
AB - We have tested the binding specificities of the pleckstrin homology (PH) domains of protein kinase B (PKB) and GRP1 (general receptor for phosphoinositides-1), expressed as green fluorescent protein (GFP) fusion proteins [PH(PKB)GFP and PH(GRP1)GFP respectively] in HEK 293 cells and Swiss 3T3 cells, using confocal microscopy. Stimulation of HEK 293 cells with insulin caused a small, but sustained, increase in PtdIns(3,4,5)P3 levels, detected using a radioligand displacement assay, which was mirrored by the translocation of PH(PKB)GFP and PH(GRP1)GFP from the cytosol to the plasma membrane of live, transfected cells. Similar results were Swiss 3T3 cells stimulated with platelet-derived growth factor (PDGF) and expressing either PH(PKB)GFP or PH(GRP1)-GFP. Biochemical analyses confirmed the accumulation of both PtdIns(3,4,5)P3 and PtdIns(3,4)P2 in response to PDGF, but only the latter was present at increased levels in Swiss 3T3 cells 30 min after an oxidative stress (1 mM H2O2). Concomitantly, only PH(PKB)GFP, and not PH(GRP1)GFP, was localized at plasma membranes after 30 min of treatment with H2O2. The fusion proteins appear accurately to report the spatial and temporal distribution of PtdIns(3,4,5)P3 and PtdIns(3,4)P2 in intact cells. These results establish the lipid selectivity of these PH domains in vivo, and further emphasize the overlapping, but distinct, second messenger roles of PtdIns(3,4,5)P3 and PtdIns(3,4)P2.
KW - Confocal microscopy
KW - Green fluorescent protein
UR - http://www.scopus.com/inward/record.url?scp=0033572662&partnerID=8YFLogxK
U2 - 10.1042/0264-6021:3440929
DO - 10.1042/0264-6021:3440929
M3 - Article
C2 - 10585883
AN - SCOPUS:0033572662
SN - 0264-6021
VL - 344
SP - 929
EP - 936
JO - Biochemical Journal
JF - Biochemical Journal
IS - 3
ER -