TY - JOUR
T1 - The pleiotropic role of p53 in functional/dysfunctional neurons
T2 - focus on pathogenesis and diagnosis of Alzheimer's disease
AU - Abate, Giulia
AU - Frisoni, Giovanni B.
AU - Bourdon, Jean-Christophe
AU - Piccirella, Simona
AU - Memo, Maurizio
AU - Uberti, Daniela
N1 - Funding: Diadem Srl
PY - 2020/12/3
Y1 - 2020/12/3
N2 - Background: Understanding the earliest pathophysiological changes of Alzheimer's disease (AD) may aid in the search for timely diagnostic biomarkers and effective disease-modifying therapies. The p53 protein is mostly known for its role in tumor suppression. However, emerging evidence supports that dysregulated p53 activity may contribute to various peripheral and brain alterations during the earliest stages of AD. This review describes the mechanisms through which p53 dysregulation may exacerbate AD pathology and how this could be used as a potential peripheral biomarker for early detection of the disease.Main body: p53, known as the guardian of the genome, may underlie various compensation or defense mechanisms that prevent neurons from degeneration. These mechanisms include maintenance of redox homeostasis, regulation of inflammation, control of synaptic function, reduction of amyloid β peptides, and inhibition of neuronal cell cycle re-entry. Thereby, dysregulation of p53-dependent compensation mechanisms may contribute to neuronal dysfunction, thus leading to neurodegeneration. Interestingly, a conformational misfolded variant of p53, described in the literature as unfolded p53, which has lost its canonical structure and function, was observed in peripheral cells from mild cognitive impairment (MCI) and AD patients. In AD pathology, this peculiar conformational variant was caused by post-translational modifications rather than mutations as commonly observed in cancer. Although the presence of the conformational variant of p53 in the brain has yet to be formally demonstrated, the plethora of p53-dependent compensation mechanisms underscores that the guardian of the genome may not only be lost in the periphery during AD pathology.Conclusion: These findings revisit the role of p53 in the early development and exacerbation of AD pathology, both in the brain and periphery. The conformational variant of p53 represents a potential peripheral biomarker that could detect AD at its earliest stages.
AB - Background: Understanding the earliest pathophysiological changes of Alzheimer's disease (AD) may aid in the search for timely diagnostic biomarkers and effective disease-modifying therapies. The p53 protein is mostly known for its role in tumor suppression. However, emerging evidence supports that dysregulated p53 activity may contribute to various peripheral and brain alterations during the earliest stages of AD. This review describes the mechanisms through which p53 dysregulation may exacerbate AD pathology and how this could be used as a potential peripheral biomarker for early detection of the disease.Main body: p53, known as the guardian of the genome, may underlie various compensation or defense mechanisms that prevent neurons from degeneration. These mechanisms include maintenance of redox homeostasis, regulation of inflammation, control of synaptic function, reduction of amyloid β peptides, and inhibition of neuronal cell cycle re-entry. Thereby, dysregulation of p53-dependent compensation mechanisms may contribute to neuronal dysfunction, thus leading to neurodegeneration. Interestingly, a conformational misfolded variant of p53, described in the literature as unfolded p53, which has lost its canonical structure and function, was observed in peripheral cells from mild cognitive impairment (MCI) and AD patients. In AD pathology, this peculiar conformational variant was caused by post-translational modifications rather than mutations as commonly observed in cancer. Although the presence of the conformational variant of p53 in the brain has yet to be formally demonstrated, the plethora of p53-dependent compensation mechanisms underscores that the guardian of the genome may not only be lost in the periphery during AD pathology.Conclusion: These findings revisit the role of p53 in the early development and exacerbation of AD pathology, both in the brain and periphery. The conformational variant of p53 represents a potential peripheral biomarker that could detect AD at its earliest stages.
KW - Alzheimer's disease
KW - p53
KW - Conformational variant of p53
KW - Alzheimer’s disease
UR - http://www.scopus.com/inward/record.url?scp=85097060956&partnerID=8YFLogxK
U2 - 10.1186/s13195-020-00732-0
DO - 10.1186/s13195-020-00732-0
M3 - Review article
C2 - 33272326
SN - 1758-9193
VL - 12
JO - Alzheimer's Research and Therapy
JF - Alzheimer's Research and Therapy
M1 - 160
ER -