The R1441C-Lrrk2 mutation induces myeloid immune cell exhaustion in an age- and sex-dependent manner in mice

Rebecca L. Wallings, Karen McFarland, Hannah A. Staley, Noelle Neighbarger, Susen Schaake, Norbert Brüggemann, Simone Zittel, Tatiana Usnich, Christine Klein, Esther M. Sammler, Malú Gámez Tansey (Lead / Corresponding author)

Research output: Contribution to journalArticlepeer-review

Abstract

Age is the greatest risk factor for many neurodegenerative diseases, yet immune system aging, a contributor to neurodegeneration, is understudied. Genetic variation in the LRRK2 gene affects risk for both familial and sporadic Parkinson's disease (PD). The leucine-rich repeat kinase 2 (LRRK2) protein is implicated in peripheral immune cell signaling, but the effects of an aging immune system on LRRK2 function remain unclear. We analyzed peritoneal macrophages from R1441C-Lrrk2 knock-in mice and observed a biphasic, age-dependent effect of the R1441C-Lrrk2 mutation on peritoneal macrophage function. We report increases in antigen presentation, anti-inflammatory cytokine production, lysosomal activity, and pathogen uptake in peritoneal macrophages from young (2- to 3-month-old) female R1441C-Lrrk2 mice. Conversely, macrophages from aged (18- to 21-month-old) female R1441C-Lrrk2 mice exhibited decreased antigen presentation after inflammatory insult, decreased lysosomal function, and pathogen uptake, with a concomitant increase in DNA fragmentation in the presence of pathogens. This immune cell exhaustion phenotype was not observed in male R1441C-Lrrk2 mice and was driven by increased LRRK2 protein kinase activity. This phenotype was also observed in human peripheral myeloid cells, with monocyte-derived macrophages from patients with PD who had either the R1441C- or Y1699C-LRRK2 mutation exhibiting decreased pathogen uptake and increased PDL1 expression, consistent with immune cell exhaustion. Our findings that LRRK2 mutations conferred an immunological advantage at a young age but could predispose the carrier to age-acquired immune cell exhaustion have implications for the therapeutic development of LRRK2 inhibitors.

Original languageEnglish
Article numbereadl1535
Number of pages15
JournalScience Translational Medicine
Volume16
Issue number772
Early online date6 Nov 2024
DOIs
Publication statusPublished - Nov 2024

ASJC Scopus subject areas

  • General Medicine

Fingerprint

Dive into the research topics of 'The R1441C-Lrrk2 mutation induces myeloid immune cell exhaustion in an age- and sex-dependent manner in mice'. Together they form a unique fingerprint.

Cite this