The spatial effect of protein deuteration on nitroxide spin-label relaxation: implications for EPR distance measurement

Hassane El Mkami, Richard Ward, Andrew Bowman, Tom Owen-Hughes, David G. Norman (Lead / Corresponding author)

    Research output: Contribution to journalArticlepeer-review

    24 Citations (Scopus)
    221 Downloads (Pure)

    Abstract

    Pulsed electron-electron double resonance (PELDOR) coupled with site-directed spin labeling is a powerful technique for the elucidation of protein or nucleic acid, macromolecular structure and interactions. The intrinsic high sensitivity of electron paramagnetic resonance enables measurement on small quantities of bio-macromolecules, however short relaxation times impose a limit on the sensitivity and size of distances that can be measured using this technique. The persistence of the electron spin-echo, in the PELDOR experiment, is one of the most crucial limitations to distance measurement. At a temperature of around 50K one of the predominant factors affecting persistence of an echo, and as such, the sensitivity and measurable distance between spin labels, is the electron spin echo dephasing time (Tm). It has become normal practice to use deuterated solvents to extend Tm and recently it has been demonstrated that deuteration of the underlying protein significantly extends Tm. Here we examine the spatial effect of segmental deuteration of the underlying protein, and also explore the concentration and temperature dependence of highly deuterated systems.
    Original languageEnglish
    Pages (from-to)36-41
    Number of pages6
    JournalJournal of Magnetic Resonance
    Volume248
    DOIs
    Publication statusPublished - Nov 2014

    Fingerprint

    Dive into the research topics of 'The spatial effect of protein deuteration on nitroxide spin-label relaxation: implications for EPR distance measurement'. Together they form a unique fingerprint.

    Cite this