Projects per year
Abstract
The guanidine-II (mini-ykkC) riboswitch is the smallest of the guanidine-responsive riboswitches, comprising two stem loops of similar sequence. We have solved high-resolution crystal structures of both stem loops for the riboswitch from Gloeobacter violaceus. The stem loops have a strong propensity to dimerize by intimate loop-loop interaction. The dimerization creates specific binding pockets for two guanidine molecules, explaining their cooperative binding. Within the binding pockets the ligands are hydrogen bonded to a guanine at O6 and N7, and to successive backbone phosphates. Additionally they are each stacked upon a guanine nucleobase. One side of the pocket has an opening to the solvent, slightly lowering the specificity of ligand binding, and structures with bound methylguanidine, aminoguanidine, and agmatine show how this is possible.
Original language | English |
---|---|
Pages (from-to) | 695-702.e2 |
Number of pages | 10 |
Journal | Cell Chemical Biology |
Volume | 24 |
Issue number | 6 |
Early online date | 18 May 2017 |
DOIs | |
Publication status | Published - 22 Jun 2017 |
Keywords
- Gene regulation
- RNA structure
- X-ray crystallography
- riboregulation
Fingerprint
Dive into the research topics of 'The Structure of the Guanidine-II Riboswitch'. Together they form a unique fingerprint.Projects
- 2 Finished
-
Dynamics of Eukaryotic Junction-Resolving Enzyme GEN1 - DNA Junction Interactions
Lilley, D. (Investigator)
Biotechnology and Biological Sciences Research Council
1/10/16 → 30/09/19
Project: Research
-
Fluorescence Resonance Energy Transfer as a Rich Source of Orientational Information in Nucleic Acid Structure
Lilley, D. (Investigator)
Engineering and Physical Sciences Research Council
1/09/12 → 30/06/16
Project: Research
Profiles
-
Lilley, David
- Molecular Cell and Developmental Biology - Professor of Molecular Biology
Person: Academic