The twin arginine consensus motif of Tat signal peptides is involved in Sec-independent protein targeting in Escherichia coli

    Research output: Contribution to journalArticle

    231 Citations (Scopus)

    Abstract

    In Escherichia coli a subset of periplasmic proteins is exported through the Tat pathway to which substrates are directed by an NH(2)-terminal signal peptide containing a consensus SRRXFLK "twin arginine" motif. The importance of the individual amino acids of the consensus motif for in vivo Tat transport has been assessed by site-directed mutagenesis of the signal peptide of the Tat substrate pre-SufI. Although the invariant arginine residues are crucial for efficient export, we find that slow transport of SufI is still possible if a single arginine is conservatively substituted by a lysine residue. Thus, in at least one signal peptide context there is no absolute dependence of Tat transport on the arginine pair. The consensus phenylalanine residue was found to be a critical determinant for efficient export but could be functionally substituted by leucine, another amino acid with a highly hydrophobic side chain. Unexpectedly, the consensus lysine residue was found to retard Tat transport. These observations and others suggest that the sequence conservation of the Tat consensus motif is a reflection of the functional importance of the consensus residues. Tat signal peptides characteristically have positively charged carboxyl-terminal regions. However, changing the sign of this charge does not affect export of SufI.
    Original languageEnglish
    Pages (from-to)11591-11596
    Number of pages6
    JournalJournal of Biological Chemistry
    Volume275
    Issue number16
    DOIs
    Publication statusPublished - 2000

    Fingerprint Dive into the research topics of 'The twin arginine consensus motif of Tat signal peptides is involved in Sec-independent protein targeting in <em>Escherichia coli</em>'. Together they form a unique fingerprint.

  • Cite this