Theoretical approaches to study degradation in Li-ion battery cathodes: Crucial role of exchange and correlation

Hrishit Banerjee (Lead / Corresponding author), Andrew J. Morris

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)
18 Downloads (Pure)

Abstract

Abstract: Li-ion batteries have become essential in energy storage, with demand rising steadily. Cathodes, crucial for determining capacity and voltage, face challenges like degradation in the form of thermal runaway and battery failure. Understanding these degradation phenomena is vital for developing mitigation strategies. Experimental techniques such as XAS, XPS, PES, UV–Vis, RIXS, NMR, and OEMS are commonly used, but theoretical modelling, particularly atomistic modelling with density-functional theory (DFT), provides key insights into the microscopic electronic behaviours causing degradation. While DFT offers a precise formulation, its approximations in the exchange-correlation functional and its ground-state, 0K limitations necessitate additional methods like ab initio molecular dynamics. Recently, many-body electronic structure methods have been used alongside DFT to better explain electron–electron interactions and temperature effects. This review emphasizes material-specific methods and the importance of electron–electron interactions, highlighting the role of many-body methods in addressing key issues in cathode degradation and future development in electron–phonon coupling methods. Graphical abstract: (Figure presented.)

Original languageEnglish
Number of pages34
JournalJournal of Materials Research
DOIs
Publication statusPublished - 29 Aug 2024

Fingerprint

Dive into the research topics of 'Theoretical approaches to study degradation in Li-ion battery cathodes: Crucial role of exchange and correlation'. Together they form a unique fingerprint.

Cite this