TY - JOUR
T1 - Toward a Marker-Dense Meiotic Map of the Potato Genome
T2 - Lessons from Linkage Group I
AU - Isidore, Edwige
AU - Van Os, Hans
AU - Andrzejewski, Sandra
AU - Bakker, Jaap
AU - Barrena, Imanol
AU - Bryan, Glenn J.
AU - Caromel, Bernard
AU - Van Eck, Hennan
AU - Ghareeb, Bilal
AU - De Jong, Walter
AU - Van Koert, Paul
AU - Lefebvre, Véronique
AU - Milbourne, Dan
AU - Ritter, Enrique
AU - Van Der Voort, Jeroen Rouppe
AU - Rousselle-Bourgeois, Françoise
AU - Van Vliet, Joke
AU - Waugh, Robbie
PY - 2003/12/1
Y1 - 2003/12/1
N2 - Segregation data were obtained for 1260 potato linkage group I-specific AFLP loci from a heterozygous diploid potato population. Analytical tools that identified potential typing errors and/or inconsistencies in the data and that assembled cosegregating markers into bins were applied. Bins contain multiple-marker data sets with an identical segregation pattern, which is defined as the bin signature. The bin signatures were used to construct a skeleton bin map that was based solely on observed recombination events. Markers that did not match any of the bin signatures exactly (and that were excluded from the calculation of the skeleton bin map) were placed on the map by maximum likelihood. The resulting maternal and paternal maps consisted of 95 and 101 bins, respectively. Markers derived from EcoRI/MseI, PstI/MseI, and SacI/MseI primer combinations showed different genetic distributions. Approximately three-fourths of the markers placed into a bin were considered to fit well on the basis of an estimated residual "error rate" of 0-3%. However, twice as many PstI-based markers fit badly, suggesting that parental PstI-site methylation patterns had changed in the population. Recombination frequencies were highly variable across the map. Inert, presumably centromeric, regions caused extensive marker clustering while recombination hotspots (or regions identical by descent) resulted in empty bins, despite the level of marker saturation.
AB - Segregation data were obtained for 1260 potato linkage group I-specific AFLP loci from a heterozygous diploid potato population. Analytical tools that identified potential typing errors and/or inconsistencies in the data and that assembled cosegregating markers into bins were applied. Bins contain multiple-marker data sets with an identical segregation pattern, which is defined as the bin signature. The bin signatures were used to construct a skeleton bin map that was based solely on observed recombination events. Markers that did not match any of the bin signatures exactly (and that were excluded from the calculation of the skeleton bin map) were placed on the map by maximum likelihood. The resulting maternal and paternal maps consisted of 95 and 101 bins, respectively. Markers derived from EcoRI/MseI, PstI/MseI, and SacI/MseI primer combinations showed different genetic distributions. Approximately three-fourths of the markers placed into a bin were considered to fit well on the basis of an estimated residual "error rate" of 0-3%. However, twice as many PstI-based markers fit badly, suggesting that parental PstI-site methylation patterns had changed in the population. Recombination frequencies were highly variable across the map. Inert, presumably centromeric, regions caused extensive marker clustering while recombination hotspots (or regions identical by descent) resulted in empty bins, despite the level of marker saturation.
UR - https://www.scopus.com/pages/publications/0346731263
M3 - Article
C2 - 14704190
AN - SCOPUS:0346731263
SN - 0016-6731
VL - 165
SP - 2107
EP - 2116
JO - Genetics
JF - Genetics
IS - 4
ER -