TY - JOUR
T1 - Traumatic needle damage to nerves during regional anesthesia
T2 - presentation of a novel mechanotransduction hypothesis
AU - McLeod, Graeme A.
AU - Sadler, Amy
AU - Hales, Tim G.
N1 - Publisher Copyright:
© American Society of Regional Anesthesia & Pain Medicine 2022. No commercial re-use. See rights and permissions. Published by BMJ.
PY - 2022/11/1
Y1 - 2022/11/1
N2 - Despite advances in needle positioning techniques, nerve damage still occurs after regional anesthesia. Recognized causes include local anesthetic toxicity, subperineural injection, high subepineural fluid injection pressures and subepineural hematoma after forceful needle--nerve contact.We hypothesize that subperineural injection is still possible, but less likely to be the cause of nerve damage because needle penetration of fascicles and mechanical damage is difficult to achieve. High-resolution (75 µm) 40 MHz micro-ultrasound images of pig axillae show short-bevelled 22 g, 0.7 mm wide block needles that are three times larger than the average fascicle. Fascicular bundles are extremely difficult to puncture because they spin away on needle contact. Histology from fresh cadavers after supposed intrafascicular injection shows fluid spread within perineurium and intrafascicular perineural septae, but no breach of endoneurium or axons.We propose that mechanotransduction, the cellular changes that occur in response to force, contributes to nerve damage. Piezo ion channel proteins transduce force into electrical activity by rapid entry of cations into cells. Excessive Ca2+ influx into cells has the potential to inhibit nerve regeneration. Cellular changes include regulation of gene expression. The forces associated with purposeful needle insertion are generally unknown. Our experiments in the soft embalmed Thiel cadaver showed a lognormal range of forces between 0.6 N and 16.8 N on epineural penetration.We hypothesize that forceful needle injury may cause nerve damage by activation of Piezo receptors and release of intracellular Ca2.
AB - Despite advances in needle positioning techniques, nerve damage still occurs after regional anesthesia. Recognized causes include local anesthetic toxicity, subperineural injection, high subepineural fluid injection pressures and subepineural hematoma after forceful needle--nerve contact.We hypothesize that subperineural injection is still possible, but less likely to be the cause of nerve damage because needle penetration of fascicles and mechanical damage is difficult to achieve. High-resolution (75 µm) 40 MHz micro-ultrasound images of pig axillae show short-bevelled 22 g, 0.7 mm wide block needles that are three times larger than the average fascicle. Fascicular bundles are extremely difficult to puncture because they spin away on needle contact. Histology from fresh cadavers after supposed intrafascicular injection shows fluid spread within perineurium and intrafascicular perineural septae, but no breach of endoneurium or axons.We propose that mechanotransduction, the cellular changes that occur in response to force, contributes to nerve damage. Piezo ion channel proteins transduce force into electrical activity by rapid entry of cations into cells. Excessive Ca2+ influx into cells has the potential to inhibit nerve regeneration. Cellular changes include regulation of gene expression. The forces associated with purposeful needle insertion are generally unknown. Our experiments in the soft embalmed Thiel cadaver showed a lognormal range of forces between 0.6 N and 16.8 N on epineural penetration.We hypothesize that forceful needle injury may cause nerve damage by activation of Piezo receptors and release of intracellular Ca2.
KW - nerve block
KW - neurologic manifestations
KW - peripheral nerve injuries
UR - https://www.scopus.com/record/display.uri?eid=2-s2.0-85135115866&origin=inward
U2 - 10.1136/rapm-2022-103583
DO - 10.1136/rapm-2022-103583
M3 - Article
C2 - 35878962
SN - 1098-7339
VL - 47
SP - 703
EP - 706
JO - Regional Anesthesia and Pain Medicine
JF - Regional Anesthesia and Pain Medicine
IS - 11
ER -