Projects per year
Abstract
Alternatively activated M2 macrophages play an important role in maintenance of tissue homeostasis by scavenging dead cells, cell debris and lipoprotein aggregates via phagocytosis. Using proteomics, we investigated how alternative activation, driven by IL-4, modulated the phagosomal proteome to control macrophage function. Our data indicate that alternative activation enhances homeostatic functions such as proteolysis, lipolysis and nutrient transport. Intriguingly, we identified the enhanced recruitment of the TAK1/MKK7/JNK signalling complex to phagosomes of IL-4-activated macrophages. The recruitment of this signalling complex was mediated through K63 polyubiquitylation of the macrophage scavenger receptor 1 (MSR1). Triggering of MSR1 in IL-4-activated macrophages leads to enhanced JNK activation, thereby promoting a phenotypic switch from an anti-inflammatory to a pro-inflammatory state, which was abolished upon MSR1 deletion or JNK inhibition. Moreover, MSR1 K63 polyubiquitylation correlated with the activation of JNK signalling in ovarian cancer tissue from human patients, suggesting that it may be relevant for macrophage phenotypic shift in vivo. Altogether, we identified that MSR1 signals through JNK via K63 polyubiquitylation and provides evidence for the receptor's involvement in macrophage polarization.
Original language | English |
---|---|
Article number | e100299 |
Pages (from-to) | 1-15 |
Number of pages | 15 |
Journal | EMBO Journal |
Volume | 38 |
Issue number | 11 |
Early online date | 26 Apr 2019 |
DOIs | |
Publication status | Published - 3 Jun 2019 |
Keywords
- macrophage scavenger receptor 1
- phagosome
- proteomics
- scavenger receptor
- tumour-associated macrophages
ASJC Scopus subject areas
- General Neuroscience
- Molecular Biology
- General Biochemistry,Genetics and Molecular Biology
- General Immunology and Microbiology
Fingerprint
Dive into the research topics of 'Triggering MSR1 promotes JNK-mediated inflammation in IL-4 activated macrophages'. Together they form a unique fingerprint.Projects
- 2 Finished
-
Dynamics of Fundamental Cellular Processes by Live Cell and Tissue Imaging
MacDonald, M. (Investigator), McGloin, D. (Investigator), McKenna, S. (Investigator), Storey, K. (Investigator), Swedlow, J. (Investigator) & Weijer, K. (Investigator)
1/01/13 → 31/12/17
Project: Research
-
Strategic Award: Wellcome Trust Technology Platform
Blow, J. (Investigator), Lamond, A. (Investigator) & Owen-Hughes, T. (Investigator)
1/01/13 → 30/09/18
Project: Research