UBF binding in vivo is not restricted to regulatory sequences within the vertebrate ribosomal DNA repeat

Audrey C. O'Sullivan, Gareth J. Sullivan, Brian McStay

    Research output: Contribution to journalArticlepeer-review

    194 Citations (Scopus)

    Abstract

    The HMG box containing protein UBF binds to the promoter of vertebrate ribosomal repeats and is required for their transcription by RNA polymerase I in vitro. UBF can also bind in vitro to a variety of sequences found across the intergenic spacer in Xenopus and mammalian ribosomal DNA (rDNA) repeats. The high abundance of UBF, its colocalization with rDNA in vivo, and its DNA binding characteristics, suggest that it plays a more generalized structural role over the rDNA repeat. Until now this view has not been supported by any in vivo data. Here, we utilize chromatin immunoprecipitation from a highly enriched nucleolar chromatin fraction to show for the first time that UBF binding in vivo is not restricted to known regulatory sequences but extends across the entire intergenic spacer and transcribed region of Xenopus, human, and mouse rDNA repeats. These results are consistent with a structural role for UBF at active nucleolar organizer regions in addition to its recognized role in stable transcription complex formation at the promoter.
    Original languageEnglish
    Pages (from-to)657-668
    Number of pages12
    JournalMolecular and Cellular Biology
    Volume22
    Issue number2
    DOIs
    Publication statusPublished - Jan 2002

    Fingerprint

    Dive into the research topics of 'UBF binding in vivo is not restricted to regulatory sequences within the vertebrate ribosomal DNA repeat'. Together they form a unique fingerprint.

    Cite this