TY - JOUR
T1 - Update in the CNS response to hypoglycemia
AU - McCrimmon, Rory J.
N1 - MEDLINE® is the source for the MeSH terms of this document.
PY - 2012/1/1
Y1 - 2012/1/1
N2 - Hypoglycemia remains a major clinical issue in the management of people with type 1 and type 2 diabetes. Research in basic science is only beginning to unravel the mechanisms that: 1) underpin the detection of hypoglycemia and initiation of a counterregulatory defense response; and 2) contribute to the development of defective counterregulation in both type 1 and type 2 diabetes, particularly after prior exposure to repeated hypoglycemia. In animal studies, the central nervous system has emerged as key to these processes. However, bench-based research needs to be translated through studies in human subjects as a first step to the future development of clinical intervention. This Update reviews studies published in the last 2 yr that examined the central nervous system effects of hypoglycemia in human subjects, largely through neuroimaging techniques, and compares these data with those obtained from animal studies and the implications for future therapies. Based on these studies, it is increasingly clear that our understanding of how the brain responds and adapts to recurrent hypoglycemia remains very limited. Current therapies have provided little evidence that they can prevent severe hypoglycemia or improve hypoglycemia awareness in type 1 diabetes. There remains an urgent need to increase our understanding of how and why defective counterregulation develops in type 1 diabetes in order for novel therapeutic interventions to be developed and tested.
AB - Hypoglycemia remains a major clinical issue in the management of people with type 1 and type 2 diabetes. Research in basic science is only beginning to unravel the mechanisms that: 1) underpin the detection of hypoglycemia and initiation of a counterregulatory defense response; and 2) contribute to the development of defective counterregulation in both type 1 and type 2 diabetes, particularly after prior exposure to repeated hypoglycemia. In animal studies, the central nervous system has emerged as key to these processes. However, bench-based research needs to be translated through studies in human subjects as a first step to the future development of clinical intervention. This Update reviews studies published in the last 2 yr that examined the central nervous system effects of hypoglycemia in human subjects, largely through neuroimaging techniques, and compares these data with those obtained from animal studies and the implications for future therapies. Based on these studies, it is increasingly clear that our understanding of how the brain responds and adapts to recurrent hypoglycemia remains very limited. Current therapies have provided little evidence that they can prevent severe hypoglycemia or improve hypoglycemia awareness in type 1 diabetes. There remains an urgent need to increase our understanding of how and why defective counterregulation develops in type 1 diabetes in order for novel therapeutic interventions to be developed and tested.
UR - http://www.scopus.com/inward/record.url?scp=84855520272&partnerID=8YFLogxK
U2 - 10.1210/jc.2011-1927
DO - 10.1210/jc.2011-1927
M3 - Article
C2 - 22223763
AN - SCOPUS:84855520272
SN - 0021-972X
VL - 97
SP - 1
EP - 8
JO - Journal of Clinical Endocrinology & Metabolism
JF - Journal of Clinical Endocrinology & Metabolism
IS - 1
ER -