Visualization of the Serratia type VI secretion system reveals unprovoked attacks and dynamic assembly

Amy J. Gerc, Andreas Diepold, Katharina Trunk, Michael Porter, Colin Rickman, Judith P. Armitage, Nicola R. Stanley-Wall, Sarah J. Coulthurst (Lead / Corresponding author)

Research output: Contribution to journalArticlepeer-review

54 Citations (Scopus)
312 Downloads (Pure)

Abstract

The Type VI secretion system (T6SS) is a bacterial nanomachine that fires toxic proteins into target cells. Deployment of the T6SS represents an efficient and widespread means by which bacteria attack competitors or interact with host organisms and may be triggered by contact from an attacking neighbor cell as a defensive strategy. Here, we use the opportunist pathogen Serratia marcescens and functional fluorescent fusions of key components of the T6SS to observe different subassemblies of the machinery simultaneously and on multiple timescales in vivo. We report that the localization and dynamic behavior of each of the components examined is distinct, revealing a multi-stage and dynamic assembly process for the T6SS machinery. We also show that the T6SS can assemble and fire without needing a cell contact trigger, defining an aggressive strategy that broadens target range and suggesting that activation of the T6SS is tailored to survival in specific niches.

Original languageEnglish
Pages (from-to)2131-2142
Number of pages12
JournalCell Reports
Volume12
Issue number12
Early online date17 Sept 2015
DOIs
Publication statusPublished - 29 Sept 2015

ASJC Scopus subject areas

  • General Biochemistry,Genetics and Molecular Biology

Fingerprint

Dive into the research topics of 'Visualization of the Serratia type VI secretion system reveals unprovoked attacks and dynamic assembly'. Together they form a unique fingerprint.

Cite this