Projects per year
Abstract
The functional diversity of neurons is specified through their proteome resulting in elaborate and tightly regulated protein interaction networks and signalling that regulates neuronal processes. Dysregulation of these dynamic networks in development or in adulthood lead to neurodevelopmental or neurological disorders respectively. Over the past few decades, mass spectrometry has become a powerful tool for quantifying and resolving any proteome, including complex tissues such as the brain proteome, with technological advances leading to higher levels of resolution and throughput than traditional biochemical techniques. In this article, we provide a proteomic reference dataset that has been generated to identify proteins and quantify their level of expression in primary mouse cortical neurons. It represents a summary analysis of previously published data in (Antico et al., 2021). Mouse cortical neurons were isolated from E16.5 C57Bl/6J mice and cultured for 21 days in vitro (DIV). We employed the mitochondrial uncouplers AntimycinA/Oligomycin (AO) to induce mitochondrial depolarisation that is a well-established paradigm to assess mitophagic signalling. Total lysates from mouse primary cortical neurons were subjected to label-free quantitative proteomic analysis using both data dependent acquisition (DDA) and data independent acquisition (DIA) modes. DDA proteomic analysis identified a total dataset of 9367 proteins in mouse cortical neurons and absolute abundance of proteins was calculated as copy numbers per cell. DDA dataset was also processed to generate a reference spectral library to fit in and quantify MS spectra generated in DIA mode. Quantitative DIA analysis identified more than 6000 protein groups and statistical comparison of the two analysed groups (untreated and AO-treated) revealed that the neuronal proteome was largely unchanged post mitochondrial depolarisation for 5 hours. To our knowledge, these files represent the most comprehensive DDA and DIA reference datasets of fully functional maturated mouse primary cortical neurons and serve as a valuable resource for further investigating the role of specific proteins involved in neurobiology and neurological disorders such as Alzheimer's disease (AD), Parkinson's disease (PD) and Autism Spectrum Disorders (ASD).
Original language | English |
---|---|
Article number | 109336 |
Number of pages | 11 |
Journal | Data in Brief |
Volume | 49 |
Early online date | 23 Jun 2023 |
DOIs | |
Publication status | Published - Aug 2023 |
Keywords
- Copy Number Variation (CNV)
- Deubiquitinases (DUBs)
- E3-ligases
- Kinases
- Label-free quantification
- Neurodegenerative disease
- Neuronal proteome
- phosphatases
ASJC Scopus subject areas
- General
Fingerprint
Dive into the research topics of 'Whole proteome copy number dataset in primary mouse cortical neurons'. Together they form a unique fingerprint.Projects
- 3 Finished
-
ASAP - Mapping the LRRK2 Signalling Pathway and its Interplay with other Parkinson's Disease Components
Alessi, D. (Investigator) & Muqit, M. (Investigator)
Aligning Science Across Parkinson's (ASAP), Michael J. Fox Foundation for Parkinson's Research
1/10/20 → 1/10/24
Project: Research
-
Searching for New Protein Targets of the PINK1 and Parkin Genes in Parkinsons Disease
Muqit, M. (Investigator)
1/04/18 → 31/03/21
Project: Research
-
Biochemical Analysis of the PINK-1 Parkin Signalling Pathway in Parkinson's Disease (Senior Clinical Fellowship)
Muqit, M. (Investigator)
1/07/13 → 31/12/23
Project: Research