Function and inhibition of the mitochondrial O-GlcNAc transferase isoform

  • Riccardo Trapannone

    Student thesis: Doctoral ThesisDoctor of Philosophy


    The O-linked N-acetylglucosamine post-translational modification (O-GlcNAcylation) is the dynamic and reversible attachment of N-acetylglucosamine to serine and threonine residues of target proteins. It is abundant in metazoa, involving hundreds of proteins linked to a plethora of biological functions with implications in human diseases. The process is catalysed by two enzymes, O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), that add and remove the sugar moiety, respectively. Ogt gene knock-out is embryonic lethal in a range of animal models, hampering the study of the biological role of O-GlcNAc. O-GlcNAcylation of nuclear and cytoplasmic proteins has been extensively studied, however little is known about the role of O-GlcNAc in mitochondria. A previous report suggested the presence of a mitochondrial OGT isoform (mOGT) in human cell lines in addition to the well-characterised nucleocytoplasmic one (ncOGT). Since this report more than one decade ago, this putative mOGT has not been studied further. Similarly, hundreds of O-GlcNAcylated nucleocytoplasmic proteins have been identified by high-throughput proteomic screens, whereas only a few mitochondrial proteins have been detected. Nevertheless, several studies suggest that altered O-GlcNAc signalling affects mitochondrial function and morphology, with potential clinical implications. The aim of this thesis work was to study and characterise the biological role of mOGT and determine the mitochondrial O-GlcNAc proteome. Firstly, the presence of mOGT in human cell lines and mouse tissues was investigated. Surprisingly, analysis of genomic sequences indicates that this isoform cannot be expressed at protein level in most of the species analysed, except human and some primates. In fact, the putative mOGT cDNA in most of the genomes analysed contains a stop codon that excludes the presence of such isoform. In addition, mOGT was not detected at protein level in a wide range of human cell lines. Knock-down experiments and Western blot analysis of all the predicted OGT isoforms suggested the expression of only a single OGT isoform. In agreement with this, overexpression of ncOGT in HEK 293 suspension cells led to increased O-GlcNAcylation of mitochondrial proteins, suggesting that ncOGT is necessary and sufficient for the generation of the mitochondrial O-GlcNAc proteome. These data point to a model where O-GlcNAc cycling of mitochondrial proteins occurs in the cytosol, followed by their import into mitochondria. Alternatively, ncOGT itself might be transported into mitochondria where it can take part to O-GlcNAc cycling inside the organelle. In parallel, some advance in determining the O-GlcNAc mitochondrial proteome has been undertaken. Different mitochondrial fractionation protocols, combined with O-GlcNAc enrichment methods have been explored in order to map novel glycosylation sites on mitochondrial proteins. A novel technique established in our research group, employing a bacterial OGA orthologue as a bait to trap O-GlcNAcylated proteins, has been applied to crude mitochondrial fractions allowing the identification of several hits, although site mapping has not been yet achieved.

    The second chapter describes the work that has been done to improve and optimise novel O-GlcNAc inhibitors previously designed in the laboratory, called goblins. The original objective was to make these molecules cell-permeable and possibly target them to mitochondria in order to inhibit mOGT. Several strategies were explored to deliver the compounds into living cells, including the use of transfection reagents and covalent linkage to linear cell-penetrant peptides. The above methods did not achieve cellular uptake, although recently designed cyclic cell-penetrant peptides, linked to fluorescein, were internalised by HeLa cells with immediate diffuse nucleocytoplasmic staining. These molecules will be linked to goblins aiming to use the inhibitors for cell biology studies.

    A different approach, based on the permeabilisation of Drosophila embryos, enabled the penetration of goblins into the organisms with consequent reduction of global O-GlcNAc levels. This method allowed the use of these novel bisubstrate inhibitors in vivo for the first time, with potential applications in studying the role of O-GlcNAc in Drosophila development and possibly for future therapeutic purposes after further development of the scaffold.
    Date of Award2015
    Original languageEnglish
    SupervisorDaan van Aalten (Supervisor)


    • Protein post-translational modification
    • O-GlcNAc
    • OGT
    • Mitochondria

    Cite this