Abstract
This report describes a 3 year study carried out to determine the effects of modern coal power generation technologies on the properties of fly ash and how these may affect the use of the material in concrete. A total of 18 fly ashes, from 11 different sources, produced under a range of conditions and technologies were investigated. These primarily included co-combustion, low NOx, supercritical and oxy-fuel technologies, although other available materials (run-of-station, air-classified, processed and stockpiled fly ashes) were included for comparison.The initial experimental work involved physical and chemical characterization of the fly ash samples. Thereafter, tests covering fresh properties, strength development and durability were carried out on selected concretes. A fly ash level of 30% was used with w/c ratios covering the practical range considered (0.35 to 0.65). Equal strength comparisons were also made where appropriate. Finally, granular (unbound fly ash) and monolithic (fly ash concrete) leaching tests were carried out to assess the environmental implications of using the fly ashes.
The results from the physical and chemical characterization tests suggest that modern technologies used for coal fired power generation can have an influence on the properties of fly ash produced. The co-combustion, oxy-fuel and in-combustion low NOx fly ashes had reduced fineness and greater LOI, which had a negative effect on foam index and water requirement of the materials. However reactivity was largely unaffected. The post-combustion low NOx and supercritical fly ashes appeared to be unaffected by their production methods compared to that produced by conventional/establish means.
Tests on fresh concrete properties showed that fly ashes with high LOI and low fineness required higher SP doses than the reference PC concrete. However, fly ashes with high fineness and low surface area were found to require a lower SP dose than the PC concrete. The concrete compressive strength tests indicate that, in general, finer fly ash concretes tended to have higher strengths than those containing coarser material. However, there did not appear to be any significant difference in performance between fly ash concretes, which suggests that, although modern technologies can have an impact on fly ash properties, if account is taken of these they should not have any significant influence on strength development. Comparison with an earlier study from the 1990s considering BS EN 450-1 fly ashes showed general agreement between the data.
The durability study showed that finer, low LOI fly ashes had higher chloride resistance and at equal strength fly ash concretes performed better than those with PC. Equal strength fly ash concretes covering the modern technologies were found to have similar levels of durability for sulfate attack, abrasion and carbonation. High alkali concrete (following the BS 812-123 method) gave similar expansion levels and good resistance with respect to AAR. With air-entrainment, it was found that the fly ash concretes required high doses of AEA (relative to the PC concrete), with high LOI/BET fly ashes requiring greatest quantities. At equal strength, the fly ash concretes had poorer freeze-thaw scaling resistance than PC concrete. However, the majority of the fly ashes did manage to achieve acceptable scaling resistance according to the Swedish criteria. In general, the findings of the durability study are in agreement with the earlier study from the 1990s. Overall, no effect of production technology on the durability of concrete was observed.
The leaching studies showed that, in general, in both granular and concrete form, modern fly ashes met the non-hazardous waste requirements in the WAC for all components tested except chromium. For the granular test, there were instances where elevated chromium levels were observed. Similarly, the fly ash concretes failed to meet the non-hazardous limit for chromium. However, chromium from the cement may have contributed to this, since the PC reference also failed to meet this requirement. Based on the results, there is no effect of production technology on the leaching characteristics of fly ash or concrete and the materials do not appear to pose a significant environmental risk.
The practical implications of the study have been considered and overall, it has been shown that modern fly ashes behave in much the same way as traditional materials, and therefore, if these materials meet the requirements of BS EN 450-1, and their properties are taken into account in the proportioning of concrete, they should give satisfactory performance.
Date of Award | 2016 |
---|---|
Original language | English |
Sponsors | Engineering and Physical Sciences Research Council & United Kingdom Quality Ash Association |
Supervisor | Michael McCarthy (Supervisor) & Rod Jones (Supervisor) |
Keywords
- Fly Ash
- Supercritical
- low NOx
- Co-combustion
- Oxy-fuel
- Concrete
- Durability
- Leaching
- Coal combustion
- Pozzolan
- Low CO2 concrete
- Modern fly ash