Leveraging unique structural characteristics of WNK kinases to achieve therapeutic inhibition
Zhang, Jinwei; Deng, Xianming; Kahle, Kristopher T.

Published in:
Science Signaling

DOI:
10.1126/scisignal.aaj2227

Publication date:
2016

Citation for published version (APA):
https://doi.org/10.1126/scisignal.aaj2227
Leveraging unique structural characteristics of WNK kinases to achieve therapeutic inhibition

Jinwei Zhang,1 Xianming Deng,2 Kristopher T. Kahle*

The with-no-lysine (K) WNK kinases are master regulators of the Na⁺-(K⁺)-Cl⁻ cotransporters, including the renal-specific NCC and NKCC2 cotransporters. The discovery of WNK463, an orally bioavailable pan-WNK kinase inhibitor that exploits unique structural properties of the WNK catalytic domain to achieve high affinity and kinase selectivity, illustrates a strategy of leveraging distinct kinase features to develop specific inhibitors and validates the genetic predictions of the in vivo pharmacology of WNK inhibition.

Protein kinases are pathogenically mutated in multiple human diseases, including cancer, neuropsychiatric disorders, inflammatory conditions, infectious diseases, and cardiovascular diseases (1). About one-third of all protein targets under investigation in the pharmaceutical industry are kinases; more than 30 kinase inhibitors are approved for clinical use; and dozens of other kinase inhibitors are actively under investigation in clinical trials (2). Despite this, the available armamentarium of clinically used kinase inhibitors covers less than 15% of the kinome, and these are used overwhelmingly for oncological conditions (2). Compared to cancer in which lack of treatment is often lethal, the bar is set much higher for kinase drug discovery in chronic conditions, because exquisite target selectivity and a minimum of side effects are required to compete with existing therapies (1).

Kinases of the WNK (with-no-lysine) family are different from other kinases, because of the unusual placement of the catalytic lysine residue in WNK isoforms (Lys233 of WNK1) compared to the active site lysine in all other protein kinases (3). This peculiarity could theoretically be exploited to create WNK-specific ATP-competitive kinase inhibitors. Indeed, Yamada et al. exploited these unique structural features to conduct a high-throughput screen for inhibitors of WNK1 catalytic activity (4). They discovered the first orally bioavailable pan-WNK kinase inhibitor, WNK463, which exhibits both low nanomolar affinity and high kinase selectivity. By solving the x-ray crystal structure of WNK463 with the kinase-dead mutant WNK1 S382A at 1.65 Å resolution, Yamada et al. showed that WNK463 contacts the hinge region of the ATP binding site by burrowing through a narrow tunnel to the back pocket of WNK1, which occurs because of the nonstandard placement of the catalytic Lys233 in the glyicine-rich loop (Fig. 1A).

Genetic inhibition of WNK kinases promotes blood pressure reduction by stimulating both diuresis and vasodilation; therefore, these kinases have garnered much attention as potential targets for the development of anti-hypertensive agents. Mutations in WNK1 (encoded by PRKWNK1) and WNK4 (encoded by PRKWNK4) cause an autosomal dominant form of hypertension that is also associated with hyperkalemia termed Gordon’s syndrome or pseudohypoaldosteronism type II (PHAII; OMIM #614496) (5). The WNK kinases regulate blood pressure and electrolyte homeostasis by phosphorylating and activating two related Ste20-type kinases termed STE20/SPS1-related proline/alanine-rich kinase (SPAK) and oxidative stress-responsive kinase 1 (OSR1), collectively referred to as SPAK/OSR1. Activated SPAK/OSR1 phosphorylate and stimulate the activities of two related cation-Cl⁻ cotransporters in the kidney in the aldosterone-sensitive part of the nephron, the Na⁺-Cl⁻ cotransporter NCC and the Na⁺-K⁺-2Cl⁻ cotransporter NKCC2 (Fig. 1B). WNKs also regulate NKCC1 and CCK2, cation-Cl⁻ cotransporters that are critical for establishing Cl⁻ homeostasis in the nervous system and are implicated in multiple diseases characterized by neuronal excitability due to GABA disinhibition (6). These actions of the WNKs make them attractive candidates for the development of inhibitors to treat these diseases as well.

Yamada et al. tested WNK463 in a rat hypertension model (4). In spontaneously hypertensive rats, orally administered WNK463 significantly decreased blood pressure, increased urine output, and reduced the phosphorylation of SPAK and OSR1. This proof-of-biology study is important, because it establishes the importance of the WNK kinase catalytic domain in blood pressure and electrolyte homeostasis and confirms predictions made by human and rodent genetics about the in vivo pharmacology of WNK kinase inhibition (7). Moreover, WNK463 will be an important research reagent that will help illuminate CCC regulation and the role of the WNK pathway, where to go from here? The WNK substrates SPAK and OSR1 play a critical role in controlling blood pressure, and SPAK-deficient mice have markedly reduced blood pressure yet are otherwise healthy (9). Genomewide association studies of essential hypertension show a strong association with common variants of SPAK. The strategy of targeting the ATP binding site of SPAK/OSR1 raises concern regarding the ability to develop sufficiently selective inhibitors that do not suppress other kinases. The development of Closantel and STOCK1-14279, ATP-insensitive inhibitors,
has introduced the possibility of developing inhibitors of the WNK pathway by binding to constitutively active or WNK-activated (T233E)ASK1 (10). Another approach is to target protein-protein interaction sites. ASK1 has a specific docking domain that mediates the interaction with RFXV motifs present in WNKs, NCC, and NKCC2 (Fig. 1B) (11). A high-resolution three-dimensional structure of this domain complexed to the RFXV motif has been solved (Fig. 1A) (12). Screens have identified inhibitors that disrupt the CCT-RFXV interaction (13), and chemical modulation of these first-generation inhibitors might yield compounds that could be used in vivo. Because the CCT domain is unique to ASK1 and OSR1, targeting this interaction site would not be expected to inhibit other kinases, which could provide sufficient specificity and safety for use in the treatment of a chronic condition, such as hypertension. Other strategies that antagonize tissue-specific WNK isoforms, for example, by targeting the unique HSN2 isoform to treat neuropathic pain (14), could minimize unwanted side effects in other organ systems.

Major challenges remain for the development of therapeutically effective kinase inhibitors in non-oncological diseases, including the identification and validation of driver kinases in these conditions and the discovery of drugs with adequate selectivity and safety (2). Targeting kinases that, when mutated, disrupt human physiology (even in rare inherited forms of disease) is a good strategy for the development of personalized treatments (15). With eight members of the WNK kinase signaling pathway, including their upstream regulators (the E3 ubiquitin ligase complex CUL3-KLHL3) and downstream targets (ASK1 and OSR1 and cation-Cl− cotransporters), being mutated in Mendelian forms of renal and central nervous system pathology (7), continued efforts at drug discovery targeting this pathway are most certainly warranted.

REFERENCES

Abstract

One-sentence summary: Exploiting unique characteristics of the WNK-SPAK pathway may yield useful antihypertensive medications.