University of Dundee

The Concise Guide to PHARMACOLOGY 2015/16

Alexander, Stephen P H; Kelly, Eamonn; Marrion, Neil; Peters, John A.; Benson, Helen E.; Faccenda, Elena

Published in:
British Journal of Pharmacology

DOI:
10.1111/bph.13347

Publication date:
2015

Licence:
CC BY

Document Version
Publisher's PDF, also known as Version of record

Link to publication in Discovery Research Portal

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in Discovery Research Portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from Discovery Research Portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain.
- You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
THE CONCISE GUIDE TO PHARMACOLOGY 2015/16: Overview

Stephen PH Alexander¹, Eamonn Kelly², Neil Marrion², John A Peters³, Helen E Benson⁴, Elena Faccenda⁴, Adam J Pawson⁴, Joanna L Sharman⁴, Christopher Southan⁴, O Peter Buneman⁵, William A Catterall⁶, John A Cidlowski⁷, Anthony P Davenport⁸, Doriano Fabbro⁹, Grace Fan¹⁰, John C McGrath¹¹, Michael Spedding¹², Jamie A Davies⁴ and CGTP Collaborators

¹School of Biomedical Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK
²School of Physiology and Pharmacology, University of Bristol, Bristol, BS8 1TD, UK
³Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK
⁴Centre for Integrative Physiology, University of Edinburgh, Edinburgh, EH8 9XD, UK
⁵Laboratory for Foundations of Computer Science, School of Informatics, University of Edinburgh, Edinburgh, EH8 9LE, United Kingdom
⁶Department of Pharmacology, University of Washington, Seattle, WA 98195-7280, USA
⁷National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
⁸Clinical Pharmacology Unit, University of Cambridge, Cambridge, CB2 0QQ, UK
⁹PIQUR Therapeutics, Basel 4057, Switzerland
¹⁰The Agnes Irwin School, Rosemont, Pennsylvania, USA
¹¹School of Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
¹²Spedding Research Solutions SARL, Le Vésinet 78110, France

Abstract

The Concise Guide to PHARMACOLOGY 2015/16 provides concise overviews of the key properties of over 1750 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.13347/full. This compilation of the major pharmacological targets is divided into eight areas of focus: G protein-coupled receptors, ligand-gated ion channels, voltage-gated ion channels, other ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The Concise Guide is published in landscape format in order to facilitate comparison of related targets. It is a condensed version of material contemporary to late 2015, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in the previous Guides to Receptors & Channels and the Concise Guide to PHARMACOLOGY 2013/14. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and GRAC and provides a permanent, citable, point-in-time record that will survive database updates.

Table of contents

5729 Overview 5732 Other Protein Targets 5733 Adiponectin receptors 5734 Blood coagulation components 5735 Non-enzymatic BRD containing proteins 5736 Carrier proteins 5737 CD molecules 5738 Methyllysine reader proteins 5739 Cytokines and growth factors 5740 Fatty acid-binding proteins 5741 Sigma receptors 5742 Tubulins 5743 G protein-coupled receptors 5744 Orphan and other 7TM receptors 5745 Class A Orphans 5746 Class C Orphans 5747 Taste 2 receptors 5748 Other 7TM proteins 5749 S-Hydroxytryptamine receptors 5750 Acetylcholine receptors (muscarinic) 5751 Adenosine receptors 5752 Adhesion Class GPCRs 5753 Adrenoceptors 5754 Angiotensin receptors 5755 Apelin receptor

Searchable database: http://www.guidetopharmacology.org/index.jsp
5777	Bile acid receptor
5778	Bombesin receptors
5780	Bradykinin receptors
5781	Calcitonin receptors
5783	Calcium-sensing receptors
5784	Cannabinoid receptors
5785	Chemerin receptor
5785	Chemokine receptors
5791	Cholecystokinin receptors
5792	Class Frizzled GPCRs
5793	Complement peptide receptors
5795	Corticotropin-releasing factor receptors
5796	Dopamine receptors
5798	Endothelin receptors
5799	G protein-coupled estrogen receptor
5800	Formylpeptide receptors
5801	Free fatty acid receptors
5803	GABAB receptors
5805	Galanin receptors
5806	Ghrelin receptor
5807	Glucagon receptor family
5808	Glycoprotein hormone receptors
5810	Gonadotropin-releasing hormone receptors
5811	GPR18, GPR55 and GPR119
5812	Histamine receptors
5811	GPR18, GPR55 and GPR119
5812	Histamine receptors
5814	Hydroxycarboxylic acid receptors
5815	Kisspeptin receptor
5816	Leukotriene receptors
5818	Lyosphospholipid (LPA) receptors
5819	Lyosphospholipid (SIP) receptors
5820	Melanin-concentrating hormone receptors
5821	Melanocortin receptors
5822	Melatonin receptors
5823	Metabotropic glutamate receptors
5826	Motilin receptor
5827	Neuregulin U receptors
5828	Neuropeptide FF/neuropeptide AF receptors
5829	Neuropeptide S receptor
5828	Neuropeptide W/neuropeptide B receptors
5830	Neuropeptide Y receptors
5832	Neurotensin receptors
5833	Opioid receptors
5835	Orexin receptors
5836	Oxogluturate receptors
5836	P2Y receptors
5838	Parathyroid hormone receptors
5839	Platelet-activating factor receptor
5840	Prokineticin receptors
5841	Prolactin-releasing peptide receptor
5842	Prostanoid receptors
5843	Proteinase-activated receptors
5846	QRFP receptor
5846	Relaxin family peptidyl receptors
5848	Somatostatin receptors
5850	Succinate receptor
5850	Tachykinin receptors
5852	Thyrotropin-releasing hormone receptors
5852	Trace amine receptor
5854	Urotensin receptor
5854	Vasopressin and oxytocin receptors
5856	VIP and PACAP receptors
5870	Ligand-Gated Ion Channels
5871	S-HT3 receptors
5873	Acid-sensing (proton-gated) ion channels (ASICs)
5875	Epithelial sodium channels (ENaC)
5877	GABAA receptors
5882	Glycine receptors
5885	Ionotropic glutamate receptors
5891	IP3 receptor
5891	Nicotinic acetylcholine receptors
5896	P2X receptors
5898	Byanodine receptor
5900	ZAC
5904	Voltage-gated ion channels
5905	CatSper and Two-Pore channels
5907	Cyclic nucleotide-regulated channels
5909	Potassium channels
5910	Calcium-activated potassium channels
5912	Inwardly rectifying potassium channels
5915	Two-P potassium channels
5917	Voltage-gated potassium channels
5920	Transient Receptor Potential channels
5934	Voltage-gated calcium channels
5936	Voltage-gated proton channel
5937	Voltage-gated sodium channels
5942	Other Ion Channels
5943	Aquaporins
5944	Chloride channels
5944	CIC family
5947	CFTR
5948	Calcium activated chloride channel
5949	Maxi chloride channel
5950	Volume regulated chloride channels
5952	Connexins and Pannexins
5954	Sodium leak channel, non-selective

Searchable database: http://www.guidetopharmacology.org/index.jsp

receptor family
6008 Type V RTKs: FGFR (fibroblast growth factor) receptor family
6008 Type VI RTKs: PTK7/CK4
6009 Type VII RTKs: Neurotrophin receptor/Trik family
6010 Type VIII RTKs: ROR family
6010 Type IX RTKs: MuSK
6010 Type X RTKs: HGF (hepatocyte growth factor) receptor family
6011 Type XI RTKs: TAM (TYRO3-, AXL- and MER-TK) receptor family
6012 Type XII RTKs: Tie family of angiopoietin receptors
6012 Type XIII RTKs: Ephrin receptor family
6013 Type XIV RTKs: RET
6014 Type XV RTKs: RYK
6015 Type XVI RTKs: DDR (collagen receptor) family
6016 Type XIX RTKs: LMR family
6016 Type XX RTKs: STYK1
6017 Receptor tyrosine phosphatases (RTP)
6018 Tumour necrosis factor (TNF) receptor family

6024 Enzymes
6025 Protein Kinases (EC 2.7.x.x)
6026 Rho kinase
6026 Protein kinase C (PKC)
6027 Alpha subfamily
6027 Delta subfamily
6028 ETA subfamily
6028 Proteins 3 family
6029 Flavoprotein subfamily
6029 CDK4 subfamily
6030 GSK subfamily
6031 Polo-like kinase (PLK) family
6032 STE7 family
6033 Abl family
6034 Ack family
6035 Janus kinase (JakA) family
6036 Src family
6037 Tec family
6038 RAF family
6039 Peptidases and proteinases
6040 A1: Pepsin
6041 A2: Prolyl oligopeptidase
6042 S8: Subtilisin
6043 S9: Prolly oligopeptidase
6044 Acetylcholine hydrolases
6045 Amino acid hydrolases
6046 Arginase
6047 Arginase; glycineaminopeptidase
6048 Dimethylarginine dimethylaminohydrolases
6049 Carboxylases
6050 Decarboxylases
6051 Catecholamine turnover
6052 Ceramide turnover
6053 Serine palmitoyltransferase
6054 Neutral ceramidases
6055 Neutral ceramidases
6056 Neutral ceramidases
6057 Sphingolipid desaturase
6058 Sphingomyelin synthase
6059 Neutral sphingomyelinase coupling factors
6060 Acid ceramidase
6061 Alkaline ceramidases
6062 Neutral sphingomyelinase
6063 Acid ceramidase
6064 Alkaline ceramidases
6065 Alkaline ceramidases
6066 Neuronal ceramidase
6067 Neuronal ceramidase
6068 Neuronal ceramidase
6069 Neuronal ceramidase
6070 Neuronal ceramidase
6071 Neuronal ceramidase
6072 Neuronal ceramidase
6073 Neuronal ceramidase
6074 Neuronal ceramidase
6075 Neuronal ceramidase
6076 Neuronal ceramidase
6077 Neuronal ceramidase
6078 Neuronal ceramidase
6079 Neuronal ceramidase
6080 Neuronal ceramidase
6081 Neuronal ceramidase
6082 Neuronal ceramidase
6083 Neuronal ceramidase
6084 Neuronal ceramidase
6085 Neuronal ceramidase
6086 Neuronal ceramidase
6087 Neuronal ceramidase
6088 Neuronal ceramidase
6089 Neuronal ceramidase
6090 Neuronal ceramidase
6091 Neuronal ceramidase
6092 Neuronal ceramidase
6093 Neuronal ceramidase
6094 Neuronal ceramidase
6095 Neuronal ceramidase
6096 Neuronal ceramidase
6097 Neuronal ceramidase
6098 Neuronal ceramidase
6099 Neuronal ceramidase
6100 Neuronal ceramidase
6101 Neuronal ceramidase
6102 Neuronal ceramidase
6103 Neuronal ceramidase
6104 Neuronal ceramidase
6105 Neuronal ceramidase
6106 Neuronal ceramidase
6107 Neuronal ceramidase
6108 Neuronal ceramidase
6109 Neuronal ceramidase
6110 Neuronal ceramidase
6111 Neuronal ceramidase
6112 Neuronal ceramidase
6113 Neuronal ceramidase
6114 Neuronal ceramidase
6115 Neuronal ceramidase
6116 Neuronal ceramidase
6117 Neuronal ceramidase
6118 Neuronal ceramidase
6119 Neuronal ceramidase
6120 Neuronal ceramidase

Searchable database: http://www.guidetopharmacology.org/index.jsp

Overview 5731
Introduction

In order to allow clarity and consistency in pharmacology, there is a need for a comprehensive organisation and presentation of the targets of drugs. This is the philosophy of the IUPHAR/BPS Guide to PHARMACOLOGY presented on the online free access database (http://www.guidetopharmacology.org/). This database is supported by the British Pharmacological Society (BPS), the International Union of Basic and Clinical Pharmacology (IUPHAR), the Wellcome Trust and the University of Edinburgh. Data included in the Guide to PHARMACOLOGY are derived in large part from interactions with the subcommittees of the Nomenclature Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR). The Editors of the Concise Guide have compiled the individual records, in concert with the team of Curators, drawing on the expert knowledge of these latter subcommittees. The tables allow an indication of the status of the nomenclature for the group of targets listed, usually previously published in Pharmacological Reviews. In the absence of an established subcommittee, advice from several prominent, independent experts has generally been obtained to produce an authoritative consensus on nomenclature, which attempts to fit in within the general guidelines from NC-IUPHAR. This current edition, the Concise Guide to PHARMACOLOGY 2015/16, is the latest snapshot of the database in print form, following on from the Concise Guide to PHARMACOLOGY 2013/14. It contains data drawn from the online database as a rapid overview of the major pharmacological targets. Thus, there are fewer targets presented in the Concise Guide (1761) compared to the online database (2761, as of August 2015). The priority for inclusion in the Concise Guide is the presence of quantitative pharmacological data. This means that often orphan family members are not presented in the Con-

The Concise Guide, although structural information is available on the online database. An expansion in the current version of the Concise Guide is the increased inclusion of approved drugs, which reflects the aim of the online database to reflect the clinical exploitation of human molecular targets. Although many of these agents are much less selective than the tool compounds listed to define individual targets or groups of targets, we have included them for the significant interest associated with their use and mechanisms of action. The emphasis on approved drugs means that the online database has been expanded to include 8024 ligands (as of August 2015), meaning that additional records now appear in the Concise Guide, primarily in the enzymes section. The organisation of the data is tabular (where appropriate) with a standardised format, where possible on a single page, intended to aid understanding of and comparison within a particular target group. The Concise Guide is intended as an initial resource, with links to additional reviews and resources for greater depth and information. Pharmacological and structural data focus primarily on human gene products, wherever possible, with links to HGNC gene nomenclature and UniProt IDs. In a few cases, where data from human proteins are limited, data from other species are indicated. Pharmacological tools listed are prioritised on the basis of selectivity and availability. That is, agents (agonists, antagonists, inhibitors, activators, etc.) are included where they are both available (by donation or from commercial sources, now or in the near future) and the most selective. This edition of the Concise Guide is divided into nine sections, which comprise pharmacological targets of similar structure/function. These are G protein-coupled receptors, ligand-gated ion channels, voltage-gated ion channels, other ion channels, catalytic receptors, nuclear hormone receptors, enzymes, transporters and other protein targets. A new aspect of the Concise Guide 2015/16 is that each of these sections contains a complete listing of the families available for inspection on the online database, identifying those families reported in the Concise Guide by their page numbers. We hope that the Concise Guide will provide for researchers, teachers and students a state-of-the-art source of accurate, curated information on the background to their work that they will use in the Introductions to their Research Papers or Reviews, or in supporting their teaching and studies.

We recommend that any citations to information in the Concise Guide are presented in the following format:

In this overview are listed protein targets of pharmacological interest, which are not G protein-coupled receptors, ligand-gated ion channels, voltage-gated ion channels, ion channels, catalytic receptors, nuclear hormone receptors, enzymes, transporters or enzymes.

A dedication

This Edition of the Concise Guide to PHARMACOLOGY is dedicated to Tony Harmar (1951-2014). Tony was a friend and colleague, who was involved with IUPHAR for over 15 years and worked on the IUPHAR database for over a decade at Edinburgh, working hard to establish the curators as a team of highly informed and informative individuals imbued with Tony’s passion and dogged determination to focus on high-quality data input, ensuring high-quality data output. With time and the resources of the BPS and Wellcome Trust, combined with the expertise of the NC-IUPHAR committee members mentioned above, Tony established the online database at http://www.guidetopharmacology.org/ as the exceptional resource it is today.

Acknowledgements

We are extremely grateful for the financial contributions from the British Pharmacological Society, the International Union of Basic and Clinical Pharmacology, the Wellcome Trust (099156/Z/12/Z), which support the website and the University of Edinburgh, who host the guidetopharmacology.org website. We are also tremendously grateful to the long list of collaborators from NC-IUPHAR subcommittees and beyond, who have assisted in the construction of the Concise Guide to PHARMACOLOGY 2015/16 and the online database www.GuideToPHARMACOLOGY.org

Conflict of interest

The authors state that there are no conflicts of interest to disclose.

© 2015 The Authors. British Journal of Pharmacology published by John Wiley & Sons Ltd on behalf of The British Pharmacological Society. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Other Protein Targets

Family structure

- Adiponectin receptors
- B-cell lymphoma 2 (Bcl-2) protein family
- Bromodomain-containing proteins
- Non-enzymatic BRD containing proteins
- Carrier proteins
- CD molecules
- Chromatin-interacting transcriptional repressors
- Methyllysine reader proteins
- Circadian clock proteins
- Cytokines and growth factors
- EF-hand domain containing
- Fatty acid-binding proteins
- Heat shock proteins
- Immunoglobulins
- Inhibitors of apoptosis (IAP) protein family
- Kelch-like proteins
- Kinesins
- Mitochondrial-associated proteins
- Notch receptors
- Pentaxins
- Regulators of G protein signaling (RGS) proteins
- RZ family
- R4 family
- R7 family
- R12 family
- Reticulons
- Ribosomal factors
- Sigma receptors
- Tubulins
- Tumour-associated proteins
- WD repeat-containing proteins

Adiponectin receptors

Overview:
Adiponectin receptors (provisional nomenclature, ENSFM0000000270960) respond to the 30 kDa complement-related protein hormone adiponectin (also known as ADIPOQ; adipocyte, C1q and collagen domain-containing protein; ACRP30, adipose most abundant gene transcript 1; apM-1; gelatin-binding protein: Q15848) originally cloned from adipocytes [49]. Although sequence data suggest 7TM domains, immunological evidence indicates that, contrary to typical 7TM topology, the carboxyl terminus is extracellular, while the amino terminus is intracellular [86]. Signalling through these receptors appears to avoid G proteins. Adiponectin receptors appear rather to stimulate protein phosphorylation via AMP-activated protein kinase and MAP kinase pathways [86], possibly through the protein partner APPL1 (adaptor protein, phosphotyrosine interaction, PH domain and leucine zipper containing 1, Q9UKG1 [52]). The adiponectin receptors are a class of proteins (along with membrane progestin receptors), which contain seven sequences of aliphatic amino acids reminiscent of GPCRs, but which are structurally and functionally distinct from that class of receptor.

Nomenclature
- Adipo1 receptor
 - HGNC, UniProt
 - ADIPOR1, Q96A54
- Adipo2 receptor
 - HGNC, UniProt
 - ADIPOR2, Q86V24
 - Rank order of potency
 - globular adiponectin (ADIPOQ, Q15848) > adiponectin (ADIPOQ, Q15848)
 - globular adiponectin (ADIPOQ, Q15848) = adiponectin (ADIPOQ, Q15848)

Comments:
T-Cadherin (CDH13, P55290) has also been suggested to be a receptor for (hexameric) adiponectin [35].
Blood coagulation components

Other protein targets → Blood coagulation components

Overview: Coagulation as a pathophysiological process is interpreted as a mechanism for reducing excessive blood loss through the generation of a gel-like clot local to the site of injury. The process involves the activation, adhesion (see Integrins), degranulation and aggregation of platelets, as well as proteins circulating in the plasma. The coagulation cascade involves multiple proteins being converted to more active forms from less active precursors, typically through proteolysis (see Proteases). Listed here are the components of the coagulation cascade targeted by agents in current clinical usage.

<table>
<thead>
<tr>
<th>Nomenclature</th>
<th>coagulation factor V (proaccelerin, labile factor)</th>
<th>coagulation factor VIII, procoagulant component</th>
<th>serpin peptidase inhibitor, clade C (antithrombin), member 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>HGNC, UniProt</td>
<td>F5, P12259</td>
<td>F8, P00451</td>
<td>SERPINC1, P01008</td>
</tr>
<tr>
<td>Selective activators</td>
<td>–</td>
<td>–</td>
<td>heparin (pKd 7.8) [25], fondaparinux (pKd 7.5) [65], dalteparin [34], danaparoid [15, 58], enoxaparin [17], tinzaparin [19]</td>
</tr>
<tr>
<td>Selective antagonists</td>
<td>drotrecogin alfa (Inhibition) [40, 41]</td>
<td>drotrecogin alfa (Inhibition) [40, 41]</td>
<td>–</td>
</tr>
</tbody>
</table>

Further Reading

Non-enzymatic BRD containing proteins

Other protein targets → Bromodomain-containing proteins → Non-enzymatic BRD containing proteins

Overview: Bromodomains bind proteins with acetylated lysine residues, such as histones, to regulate gene transcription. Listed herein are examples of bromodomain-containing proteins for which sufficient pharmacology exists.

Searchable database: http://www.guidetopharmacology.org/index.jsp
Carrier proteins

Other protein targets → Carrier proteins

Overview: TTR is a homo-tetrameric protein which transports thyroxine in the plasma and cerebrospinal fluid and retinol (vitamin A) in the plasma. Many disease causing mutations in the protein have been reported, many of which cause complex dissociation and protein mis-assembly and deposition of toxic aggregates amyloid fibril formation [66]. These amyloidogenic mutants are linked to the development of pathological amyloidoses, including familial amyloid polyneuropathy (FAP) [1, 13], familial amyloid cardiomyopathy (FAC) [37], amyloidotic vitreous opacities, carpal tunnel syndrome [57] and others. In old age, non-mutated TTR can also form pathological amyloid fibrils [85]. Pharmacological intervention to reduce or prevent TTR dissociation is being pursued as a therapeutic strategy. To date one small molecule kinetic stabilising molecule (tafamidis) has been approved for FAP, and is being evaluated in clinical trials for other TTR amyloidoses.
CD molecules

Other protein targets → CD molecules

Overview: Cluster of differentiation refers to an attempt to catalogue systematically a series of over 300 cell-surface proteins associated with immunotyping. Many members of the group have identified functions as enzymes (for example, see CD73 ecto-5'-nucleotidase) or receptors (for example, see CD41 integrin, alpha 2b subunit). Many CDs are targeted for therapeutic gain using antibodies for the treatment of proliferative disorders. A full listing of all the Clusters of Differentiation is not possible in the Guide to PHARMACOLOGY; listed herein are selected members of the family targeted for therapeutic gain.

<table>
<thead>
<tr>
<th>Nomenclature</th>
<th>CD2</th>
<th>CD3ε molecule, epsilon (CD3-TCR complex)</th>
<th>CD20 (membrane-spanning 4-domains, subfamily A, member 1)</th>
<th>CD33</th>
<th>CD52</th>
<th>CD80</th>
<th>CD86</th>
<th>cytotoxic T-lymphocyte-associated protein 4 (CD152)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common abbreviation</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>CTLA-4</td>
</tr>
<tr>
<td>HGNC, UniProt</td>
<td>CD2, P06729</td>
<td>CD3ε, P07766</td>
<td>MS4A1, P11836</td>
<td>CD33, P20138</td>
<td>CD52, P31358</td>
<td>CD80, P33681</td>
<td>CD86, P42081</td>
<td>CTLA4, P16410</td>
</tr>
<tr>
<td>Selective inhibitors</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Selective antagonists</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Antibodies</td>
<td>–</td>
<td>catumaxomab (Binding) [46], muromonab-CD3 (Binding) [24], otezolizumab (Binding) [7]</td>
<td>ofatumumab (Binding) (pKD 9.9) [47], rituximab (Binding) (pKD 8.5) [78], ibritumomab tiuxetan (Binding), obinutuzumab (Binding) [2, 68], tositumomab (Binding)</td>
<td>lintuzumab (Binding) (pKD ~10) [8], gemtuzumab ozogamicin (Binding) [6]</td>
<td>alemtuzumab (Binding) [22]</td>
<td>–</td>
<td>–</td>
<td>ipilimumab (Binding) (pKD ~9) [28], tremelimumab (Binding) (pKD 8.9) [30]</td>
</tr>
</tbody>
</table>

Searchable database: http://www.guidetopharmacology.org/index.jsp

Methyllysine reader proteins

Other protein targets → Chromatin-interacting transcriptional repressors → Methyllysine reader proteins

Overview: Methyllysine reader proteins bind to methylated proteins, such as histones, allowing regulation of gene expression.

<table>
<thead>
<tr>
<th>Nomenclature</th>
<th>(L3)mbt-like 3 (Drosophila)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HGNC, UniProt</td>
<td>L3MBTL3, Q96JM7</td>
</tr>
<tr>
<td>Selective agonists</td>
<td>UNC1215 (pKd 6.9) [38]</td>
</tr>
</tbody>
</table>

Further Reading

Cytokines and growth factors

Overview: cytokines and growth factors are a group of small proteins released from cells, which act upon the same cell or neighbouring cells, often with a role in immune regulation and/or proliferation. Listed herein are examples of cytokines and growth factors targeted for therapeutic benefit.

<table>
<thead>
<tr>
<th>Nomenclature</th>
<th>interleukin 1, beta</th>
<th>tumor necrosis factor</th>
<th>vascular endothelial growth factor A</th>
</tr>
</thead>
<tbody>
<tr>
<td>HGNC, UniProt</td>
<td>IL1B, P01584</td>
<td>TNF, P01375</td>
<td>VEGFA, P15692</td>
</tr>
<tr>
<td>Antagonists</td>
<td>etanercept (Inhibition) [18, 23]</td>
<td>pegaptanib (Inhibition) [26, 61]</td>
<td></td>
</tr>
<tr>
<td>Selective antagonists</td>
<td>aflibercept (Inhibition) [10, 11, 82]</td>
<td>ranibizumab (Inhibition) (pKa ~9.8) [3], bevacizumab (Inhibition) (pIC50 8–8.3) [3]</td>
<td></td>
</tr>
<tr>
<td>Antibodies</td>
<td>gevokizumab (Binding) (pKd 12.5) [36, 53, 71], canakinumab (Binding) (pKd 10.5) [27], rilonacept (Binding) [32, 55]</td>
<td>golimumab (Inhibition) (pIC50 10.7) [77], infliximab (Inhibition) (pKd 8.7) [44], adalimumab (Inhibition) (pKd ~8) [75], certolizumab pegol (Inhibition) [60]</td>
<td></td>
</tr>
</tbody>
</table>

Fatty acid-binding proteins

Overview: Fatty acid-binding proteins are low molecular weight (100-130 aa) chaperones for long chain fatty acids, fatty acyl CoA esters, eicosanoids, retinols, retinoic acids and related metabolites and are usually regarded as being responsible for allowing the otherwise hydrophobic ligands to be mobile in aqueous media. These binding proteins may perform functions extracellularly (e.g. in plasma) or transport these agents; to the nucleus to interact with nuclear receptors (principally PPARs and retinoic acid receptors [76]) or for interaction with metabolic enzymes. Although sequence homology is limited, crystallographic studies suggest conserved 3D structures across the group of binding proteins.

<table>
<thead>
<tr>
<th>Nomenclature</th>
<th>fatty acid binding protein 1, liver</th>
<th>fatty acid binding protein 2, intestinal</th>
<th>fatty acid binding protein 3, muscle and heart</th>
<th>fatty acid binding protein 4, adipocyte</th>
<th>fatty acid binding protein 5 (psoriasis-associated)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HGNC, UniProt</td>
<td>FABP1, P07148</td>
<td>FABP2, P12104</td>
<td>FABP3, P05413</td>
<td>FABP4, P15090</td>
<td>FABP5, Q01469</td>
</tr>
<tr>
<td>Rank order of potency</td>
<td>stearic acid, oleic acid > palmitic acid, linoleic acid > arachidonic acid, α-linolenic acid [69]</td>
<td>stearic acid > palmitic acid, oleic acid > linoleic acid > arachidonic acid, α-linolenic acid [69]</td>
<td>stearic acid, oleic acid, palmitic acid > linoleic acid, α-linolenic acid, arachidonic acid [69]</td>
<td>stearic acid, oleic acid, palmitic acid > linoleic acid, α-linolenic acid, arachidonic acid [69]</td>
<td>stearic acid, oleic acid, palmitic acid > linoleic acid, α-linolenic acid, arachidonic acid [69]</td>
</tr>
<tr>
<td>Comments</td>
<td>A broader substrate specificity than other FABPs, binding two fatty acids per protein [83].</td>
<td>Crystal structure of the rat FABP2 [74].</td>
<td>Crystal structure of the human FABP3 [87].</td>
<td>–</td>
<td>Crystal structure of the human FABP5 [33].</td>
</tr>
</tbody>
</table>
Nomenclature

<table>
<thead>
<tr>
<th>Protein Name</th>
<th>HGNC, UniProt</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fatty acid binding protein 6, ileal</td>
<td>FABP6, P51161</td>
<td>Able to transport bile acids [88].</td>
</tr>
<tr>
<td>Fatty acid binding protein 7, brain</td>
<td>FABP7, O15540</td>
<td>Crystal structure of the human FABP7 [4].</td>
</tr>
<tr>
<td>Peripheral myelin protein 2</td>
<td>PMP2, P02689</td>
<td>In silico modelling suggests that FABP8 can bind both fatty acids and cholesterol [50].</td>
</tr>
<tr>
<td>Fatty acid binding protein 9, testis</td>
<td>FABP9, Q0Z758</td>
<td>–</td>
</tr>
<tr>
<td>Fatty acid binding protein 12</td>
<td>FABP12, A6NFH5</td>
<td>–</td>
</tr>
<tr>
<td>Retinol binding protein 1, cellular</td>
<td>RBP1, P09455</td>
<td>–</td>
</tr>
<tr>
<td>Retinol binding protein 2, cellular</td>
<td>RBP2, P50120</td>
<td>Stearic acid > palmitic acid, oleic acid, linoleic acid, α-linolenic acid, arachidonic acid [70].</td>
</tr>
<tr>
<td>Retinol binding protein 3, interstitial</td>
<td>RBP3, P10745</td>
<td>–</td>
</tr>
<tr>
<td>Retinol binding protein 4, plasma</td>
<td>RBP4, P02753</td>
<td>–</td>
</tr>
<tr>
<td>Retinol binding protein 5, cellular</td>
<td>RBPS, P82980</td>
<td>–</td>
</tr>
<tr>
<td>Retinol binding protein 7, cellular</td>
<td>RBP7, Q96R05</td>
<td>–</td>
</tr>
<tr>
<td>Retinaldehyde binding protein 1</td>
<td>RLBP1, P12271</td>
<td>11-cis-retinal, 11-cis-retinol > 9-cis-retinol, 13-cis-retinal, 13-cis-retinol, all-trans-retinol, retinol [14].</td>
</tr>
<tr>
<td>Cellular retinoic acid binding protein 1</td>
<td>CRABP1, P29762</td>
<td>Tretinoin > alitretinoin stearic acid > palmitic acid, oleic acid, linoleic acid, α-linolenic acid, arachidonic acid [70].</td>
</tr>
<tr>
<td>Cellular retinoic acid binding protein 2</td>
<td>CRABP2, P29373</td>
<td>–</td>
</tr>
</tbody>
</table>

Comments

Although not tested at all FABPs, BMS309403 exhibits high affinity for FABP4 (pIC50 8.8) compared to FABP3 or FABP5 (pIC50 –6.6) [20, 81]. HTS01037 is reported to interfere with FABP4 action [31]. Multiple pseudogenes for the FABPs have been identified in the human genome.

Further Reading

- Schroeder F et al. (2008) Role of fatty acid binding proteins and long chain fatty acids in modulating nuclear receptors and gene transcription. *Lipids* 43: 1-17 [PMID:17882463]

Searchable database: http://www.guidetopharmacology.org/index.jsp
Sigma receptors

Other protein targets → Sigma receptors

Overview: Although termed ‘receptors’, the evidence for coupling through conventional signalling pathways is lacking. Initially described as a subtype of opioid receptors, there is only a modest pharmacological overlap and no structural convergence with the G protein-coupled receptors. A wide range of compounds, ranging from psychoactive agents to antihistamines, have been observed to bind to these sites, which appear to be intracellular.

<table>
<thead>
<tr>
<th>Nomenclature</th>
<th>sigma non-opioid intracellular receptor 1</th>
<th>α2</th>
</tr>
</thead>
<tbody>
<tr>
<td>HGNC, UniProt</td>
<td>SIGMAR1, Q99720</td>
<td>–</td>
</tr>
<tr>
<td>Agonists</td>
<td>–</td>
<td>PB-28 (pKᵢ 8.3) [5], 1,3-ditolylguanidine (pKᵢ 7.4) [45] – Guinea pig</td>
</tr>
<tr>
<td>(Sub)family-selective agonists</td>
<td>(RS)-PPCC (pKᵢ 8.8) [67]</td>
<td>–</td>
</tr>
<tr>
<td>Selective agonists</td>
<td>PRE-084 (pIC₅₀ 7.4) [80], (+)-SK&F10047</td>
<td>–</td>
</tr>
<tr>
<td>Antagonists</td>
<td>(-)-pentazocine</td>
<td>SM 21 (pIC₅₀ 7.2) [48]</td>
</tr>
<tr>
<td>Selective antagonists</td>
<td>NE-100 (pIC₅₀ 8.4) [62], BD-1047 (pIC₅₀ 7.4) [54]</td>
<td>–</td>
</tr>
<tr>
<td>Labelled ligands</td>
<td>[³H]pentazocine (Agonist)</td>
<td>[³H]-di-o-tolylguanidine (Agonist)</td>
</tr>
<tr>
<td>Comments</td>
<td>–</td>
<td>There is no molecular correlate of the α2 receptor.</td>
</tr>
</tbody>
</table>

Comments: (-)-pentazocine also shows activity at opioid receptors.

Further Reading

Tubulins
Other protein targets → Tubulins

Overview: Tubulins are a family of intracellular proteins most commonly associated with microtubules, part of the cytoskeleton. They are exploited for therapeutic gain in cancer chemotherapy as targets for agents derived from a variety of natural products: taxanes, colchicine and vinca alkaloids. These are thought to act primarily through β-tubulin, thereby interfering with the normal processes of tubulin polymer formation and disassembly.

<table>
<thead>
<tr>
<th>Nomenclature</th>
<th>tubulin, alpha 1a</th>
<th>tubulin, alpha 4a</th>
<th>tubulin, beta class I</th>
<th>tubulin, beta 3 class III</th>
<th>tubulin, beta 4B class IVb</th>
<th>tubulin, beta 8 class VIII</th>
</tr>
</thead>
<tbody>
<tr>
<td>HGNC, UniProt</td>
<td>TUBA1A, Q71U36</td>
<td>TUBA4A, P68366</td>
<td>TUBB, P07437</td>
<td>TUBB3, Q13509</td>
<td>TUBB4B, P68371</td>
<td>TUBB8, Q3ZCM7</td>
</tr>
<tr>
<td>Inhibitors</td>
<td>–</td>
<td>–</td>
<td>eribulin (pIC₅₀ 8.2) [59], paclitaxel (Mitotic cell cycle arrest in A431 cells) (pEC₅₀ 8.1) [63], colchicine (pIC₅₀ 8) [12], cabazitaxel, docetaxel, ixabepilone</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>(Sub)family-selective inhibitors</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Further Reading

Lu Y et al. (2012) An overview of tubulin inhibitors that interact with the colchicine binding site. Pharm. Res. 29: 2943-71 [PMID:22814904]

Searchable database: http://www.guidetopharmacology.org/index.jsp
References

1. ANDRADE C. (1952) [12978172]
2. Aldujai W et al. (2011) [21378274]
 Publication date: 15/10/1998.
4. Balendirn G et al. (2000) [10854433]
5. Berardi F et al. (1996) [8568804]
7. Bolt S et al. (1993) [8436176]
8. Caron PC et al. (1992) [1458463]
10. Chang AA et al. (2013) [24144450]
11. Chu QS. (2009) [19236257]
12. Cifuentes M et al. (2006) [16504507]
15. El-Charabaty E et al. (2012) [22992146]
16. Eriksson BI et al. (1993) [7667822]
17. Feldman M et al. (1998) [9865320]
18. Friedel HA et al. (1994) [7528134]
19. Furuhashi M et al. (2007) [17554340]
20. Garcia-Calvo M et al. (2005) [15928087]
21. Giraldo L et al. (1998) [9593475]
22. Goldenberg MM. (1999) [10090426]
24. Gott R et al. (2013) [23598032]
25. Gragoudas ES et al. (2004) [15625332]
28. Hahn RD et al. (2013) [23302904]
30. Hertzog AV et al. (2009) [19754198]
31. Hoffman HM et al. (2008) [18668535]
32. Hohoff C et al. (1999) [10497390]
33. Holmer E et al. (1986) [3744129]
34. Hug C et al. (2004) [15210937]
35. Issafar H et al. (2014) [21494526]
36. Jacobson DR et al. (1997) [9017939]
37. James LR et al. (2013) [23292653]
38. Johnson DB et al. (2014) [25096781]
39. Kanji S et al. (2001) [11741212]
40. Kapur S et al. (2001) [11463021]
41. Kline J et al. (2010) [21154117]
44. Li G et al. (2013) [19734526]
45. Leve JR et al. (2006) [16463398]
46. Linke R et al. (2010) [20190651]
48. Mach RH et al. (1999) [10096443]
49. Maeda K et al. (1996) [8619847]
50. Mayaja V et al. (2010) [20421974]
51. Malas S et al. (2014) [24969320]
52. Mao X et al. (2006) [16622416]
54. Matsumoto RR et al. (1995) [8566098]
55. McDermott MF. (2009) [19649332]
57. Murakami K et al. (1999) [10403814]
58. Nakase J et al. (2009) [19398784]
59. Narayan S et al. (2011) [21324687]
60. Nesbit A et al. (2007) [17636564]
61. Nimjee SM et al. (2005) [15660527]
62. Okuyama S et al. (1993) [7901723]
63. Ouyang X et al. (2006) [16777187]
64. Pal SK et al. (2014) [24892254]
65. Paolucci F et al. (2002) [12383040]
66. Penchala SC et al. (2013) [23716704]
67. Prezzavento O et al. (2007) [17328523]
68. Reslan L et al. (2013) [23537278]
69. Richieri GV et al. (1994) [7929039]
70. Richieri GV et al. (2000) [10852718]
71. Roellig MK et al. (2010) [20410301]
73. SGC. GSCK2801: A Selective Chemical Probe for BAZZ/B/A bromodomains. Accessed on 03/03/2015. thesgc.org.
74. Sacchettini JC et al. (1989) [2671390]
76. Schroeder F et al. (2008) [17882463]
77. Shealy DJ et al. (2010) [20519961]
78. Stein R et al. (2004) [15102696]
80. Su TP et al. (1991) [16583020]
81. Sulsky R et al. (2007) [17502136]
82. Tang PA et al. (2013) [24179482]
83. Thompson J et al. (1997) [9054409]
84. Vicente Rabaneda EF et al. (2013) [23899231]
85. Westernmark P et al. (1990) [2320592]
86. Yamauchi T et al. (2003) [12802337]
87. Young AC et al. (1994) [7922029]
88. Zwickler BL et al. (2013) [23603607]