HOMOGENIZATION OF BIOMECHANICAL MODELS FOR PLANT TISSUES

ANDREY PIATNITSKI† AND MARIYA PTASHNYK‡

Abstract. In this paper homogenization of a mathematical model for plant tissue biomechanics is presented. The microscopic model constitutes a strongly coupled system of reaction-diffusion-convection equations for chemical processes in plant cells, the equations of poroelasticity for elastic deformations of plant cell walls and middle lamella, and Stokes equations for fluid flow inside the cells. The chemical process in cells and the elastic properties of cell walls and middle lamella are coupled because elastic moduli depend on densities involved in chemical reactions, whereas chemical reactions depend on mechanical stresses. Using homogenization techniques, we derive rigorously a macroscopic model for plant biomechanics. To pass to the limit in the nonlinear reaction terms, which depend on elastic strain, we prove the strong two-scale convergence of the displacement gradient and velocity field.

Key words. homogenization, two-scale convergence, periodic unfolding method, poroelasticity, Stokes system, biomechanics of plant tissues

AMS subject classification. 35B27

DOI. 10.1137/15M1046198

1. Introduction. Analysis of interactions between mechanical properties and chemical processes, which influence the elasticity and extensibility of plant cell tissues, is important for better understanding of plant growth and development, as well as their response to environmental changes. Plant tissues are composed of cells surrounded by cell walls and connected by a cross-linked pectin network of middle lamella. Plant cell walls must be very strong to resist high internal hydrostatic pressure and at the same time flexible to permit growth. It is supposed that calcium-pectin cross-linking chemistry is one of the main regulators of plant cell wall elasticity and extension [51]. Pectin is deposited to cell walls in a methylesterified form. In cell walls and middle lamella, pectin can be modified by the enzyme pectin methylesterase (PME), which removes methyl groups by breaking ester bonds. The de-esterified pectin is able to form calcium-pectin cross-links, and thus stiffen the cell wall and reduce its expansion; see, e.g., [50]. On the other hand, mechanical stresses can break calcium-pectin cross-links and hence increase the extensibility of plant cell walls and middle lamella. It has been shown that chemical properties of pectin and the control of the density of calcium-pectin cross-links greatly influence the mechanical deformations of plant cell walls [34], and the interference with PME activity causes dramatic changes in growth behavior of plant tissues [50].

To analyze the interactions between calcium-pectin dynamics and deformations of a plant tissue, we derive a mathematical model for plant tissue biomechanics at the...
length scale of plant cells. In the microscopic model we consider a system of reaction-diffusion-convection equations describing the dynamics of the methylesterified pectin, demethylesterified pectin, calcium ions, and calcium-pectin cross-links. Elastic deformations and water flow are modelled by the equations of poroelasticity for cell walls and middle lamella coupled with the Stokes system for the flow velocity inside cells. The interplay between the mechanics and the chemistry comes in by assuming that the elastic properties of cell walls and middle lamella depend on the density of the calcium-pectin cross-links and that the stress within cell walls and middle lamella can break the cross-links. Thus the microscopic problem is a strongly coupled system of the Stokes equations, reaction-diffusion-convection equations, with reaction terms depending on the displacement gradient, and equations of poroelasticity, with elastic moduli depending on the density of cross-links. To address the situations when a plant tissue is completely and not completely saturated by water, we consider both evolutionary and quasi-stationary equations of poroelasticity.

To show the existence of a weak solution of the microscopic equations, we use a classical approach and apply the Banach fixed-point theorem. However, due to quadratic nonlinearities of reaction terms, the proof of the contraction inequality is not standard and relies on delicate a priori estimates for the L^∞-norm of a solution of the reaction-diffusion-convection system in terms of the L^2-norm of displacement gradient and flow velocity. The Alikakos iteration technique [2] is applied to show the uniform boundedness of some components of solutions of the microscopic equations.

To analyze effective mechanical properties of plant tissues, we derive rigorously a macroscopic model for plant biomechanics using homogenization techniques. The two-scale convergence, e.g., [3, 31], and the periodic unfolding method, e.g., [15], are applied to obtain the macroscopic equations. The main mathematical difficulty in the derivation of the macroscopic problem arises from the strong coupling between the equations of poroelasticity and the system of reaction-diffusion-convection equations. In order to pass to the limit in the nonlinear reaction terms, we prove the strong two-scale convergence for the displacement gradient and fluid flow velocity, essential for the homogenization of the coupled problem considered here. Due to the dependence of the elasticity tensor on the time variable, in the proof of the strong two-scale convergence a specific form of the energy functional is considered.

Similar to the microscopic problem, to prove uniqueness of a solution of the macroscopic equations, we derive a contraction inequality involving the L^∞-norm of the difference of two solutions of the reaction-diffusion-convection equations. This contraction inequality also ensures the well-posedness of the limit system.

The poroelasticity equations, modelling interactions between fluid flow and elastic stresses in porous media, were first obtained by Biot using a phenomenological approach [10, 9, 8] and subsequently derived by applying techniques of homogenization theory. Formal asymptotic expansion was undertaken by the authors of [5, 13, 23, 42] to derive Biot equations from microscopic description of elastic deformations of a solid matrix and fluid flow in porous space. The rigorous homogenization of the coupled system of equations of linear elasticity for a solid matrix combined with the Stokes or Navier–Stokes equations for the fluid part was conducted in [17, 19, 24, 32] by using the two-scale convergence method. Depending on the ratios between the physical parameters, different macroscopic equations were obtained, e.g., Biot’s equations of poroelasticity, the system consisting of the anisotropic Lamé equations for the solid component, and the acoustic equations for the fluid component, the equations of viscoelasticity. The homogenization of a mathematical model for elastic deformations, fluid flow, and chemical processes in a cell tissue was considered in [20]. In contrast
to the problem considered in the present paper, in [20] the coupling between the
equations of linear elasticity and reaction-diffusion-convection equations for a concen-
tration was given only through the dependence of the elasticity tensor on the chemical
concentration. The existence and uniqueness of a solution for equations of poroelas-
ticity were studied in [45, 53].

Compared to the many results for the equations of poroelasticity, there exist only
a few studies of interactions between a free fluid and a deformable porous medium. In
[46] a nonlinear semigroup method was used for mathematical analysis of a system of
poroelastic equations coupled with the Stokes equations for free fluid flow. A rigorous
derivation of interface conditions between a poroelastic medium and an elastic body
was considered in [26]. Numerical methods for a coupled Biot poroelastic system
and Navier-Stokes equations were derived in [6]. The Nitsche method for enforcing
interface conditions was applied in [12] for numerical simulation of the Stokes–Biot
coupled system.

Several results on homogenization of equations of linear elasticity can be found
in [7, 21, 33, 42] (and the references therein). Homogenization of the microscopic
model for plant cell wall biomechanics, composed of equations of linear elasticity and
reaction-diffusion equations for chemical processes, has been studied in [39].

This paper is organized as follows. In section 2 we derive the microscopic model for
plant tissue biomechanics. A priori estimates as well as the existence and uniqueness
of a weak solution of the microscopic problem are obtained in section 3. In section 4 we
prove the convergence results for solutions of the microscopic problem. The multiscale
analysis of the coupled poroelastic and Stokes problem is conducted in section 5. In
section 6 we show strong two-scale convergence of the displacement gradient and flow
velocity. The macroscopic equations for the system of reaction-diffusion-convection
equations are derived in section 7. The well-posedness and uniqueness of a solution
of the macroscopic problem are proved in section 8. In section 9 we consider the
incompressible and quasi-stationary cases for the equations of poroelasticity.

2. Microscopic model. In the mathematical model for plant tissue biomechan-
ics we consider interactions between the mechanical properties of a plant tissue and
the chemical processes in plant cells. A plant tissue is composed of the cell inter-
ior (intracellular space), the plasma membrane, plant cell walls, and the cross-linked
pectin network of the middle lamella joining individual cells together. Primary plant
cell walls consist mainly of oriented cellulose microfibrils (that strongly influence the
cell wall stiffness), pectin, hemicellulose, proteins, and water. It is supposed that
calcium-pectin chemistry, given by the de-esterification of pectin and creation and
breakage of calcium-pectin cross-links, is one of the main regulators of cell wall elas-
ticity; see, e.g., [51]. Hence in our mathematical model we consider the interactions
and two-way coupling between calcium-pectin chemistry and elastic deformations of
a plant tissue. To describe the coupling between the mechanics and chemistry, we
consider the dynamics of pectins, calcium, and calcium-pectin cross-links, water flow
in a plant tissue, and the poroelastic nature of cell walls and middle lamella.

To derive a mathematical model for plant tissue biomechanics, we denote a do-
main occupied by a plant tissue by \(\Omega \subset \mathbb{R}^3 \), where \(\Omega \) is a bounded domain with \(C^{1,\alpha} \)
boundary for some \(\alpha > 0 \). Notice that all results also hold for a two-dimensional
domain. Then the time-independent domains \(\Omega_f \subset \Omega \) and \(\Omega_c \subset \Omega \), with \(\Omega = \Omega_f \cup \Omega_c \)
and \(\Omega_f \cap \Omega_c = \emptyset \), represent the reference (Lagrangian) configurations of the intracellul-
lar (cell interior) and intercellular (cell walls and middle lamella) spaces, respectively,
and \(\Gamma \) denotes the boundaries between the cell interior and cell walls and corresponds
to the plasma membrane. Since Γ represents the interface between elastic material and fluid in the Lagrangian configuration, it is also independent of time.

Pectin is deposited into the cell wall in a highly methylesterified state and is modified by the wall enzyme PME, which removes methyl groups [50]. It was observed experimentally that pectins can diffuse in a plant cell wall matrix; see, e.g., [18, 35, 48]. Thus in the balance equation for the density of the methylesterified pectin $b_{e,1}$ and demethylesterified pectin $b_{e,2}$,

$$\partial_t b_{e,j} + \text{div} J_{b,j} = g_{b,j} \quad \text{in } \Omega_e, \quad j = 1, 2,$$

we assume the flux to be determined by Fick’s law, i.e., $J_{b,j} = -D_{b,e,j} \nabla b_{e,j}$, with $j = 1, 2$ and $D_{b,e,j} > 0$. The term $g_{b,j}$ models chemical reactions that correspond to the demethylesterification processes and creation and breakage of calcium-pectin cross-links. In general, diffusion coefficients for pectins and calcium depend on the microscopic structure of the cell wall given by the cell wall microfibrils and hemicellulose network, which is assumed to be given and not to change in time, as well as on the density of pectins and calcium-pectin cross-links. For presentation simplicity we assume here that the diffusion coefficient does not depend on the dynamics of pectin and calcium-pectin cross-link densities. However, the analysis can be conducted in the same way for the generalized model in which the diffusion of pectin, calcium, and cross-links depends on pectin and cross-link densities, assuming that diffusion coefficients are uniformly bounded from below and above, which is biologically sensible.

The modification of methylesterified pectin by PME is modelled by the reaction term $g_{b,1} = -\mu_1 b_{e,1}$ with some $\mu_1 > 0$. For simplicity we assume that there is a constant concentration of PME enzyme in the cell wall. By simple modifications of the analysis considered here, the same results can be obtained for a generalized model including the dynamics of PME and chemical reactions between PME and pectin; see [39] for the derivation of the corresponding system of equations.

The deposition of the methylesterified pectin is described by the inflow boundary condition on the cell plasma membrane. We also assume that the demethylesterified pectin cannot move back into the cell interior:

$$D_{b,e,1} \nabla b_{e,1} \cdot n = P_t(b_{e,1}, b_{e,2}, b_{e,3}), \quad D_{b,e,2} \nabla b_{e,2} \cdot n = 0 \quad \text{on } \Gamma.$$

To account for mechanisms controlling the amount of pectin in the cell wall, we assume that the inflow of new methylesterified pectin depends on the density of methylesterified and demethylesterified pectin, i.e., $b_{e,1}$ and $b_{e,2}$, and calcium-pectin cross-links $b_{e,3}$.

We consider the diffusion and transport by water flow of calcium molecules in the symplast (in the cell interior) and diffusion of calcium in the apoplast (cell walls and middle lamella); see, e.g., [49]. Then the balance equations for calcium densities c_f and c_e in Ω_f and Ω_e, respectively, are given by

$$\partial_t c_f - \text{div}(D_f \nabla c_f - G(\partial_t u_f) c_f) = g_f \quad \text{in } \Omega_f,$$
$$\partial_t c_e - \text{div}(D_e \nabla c_e) = g_e \quad \text{in } \Omega_e,$$

where the chemical reaction term $g_f = g_f(c_f)$ in Ω_f describes the decay and/or buffering of calcium inside the plant cells (see, e.g., [52]), g_e models the interactions between calcium and demethylesterified pectin in cell walls and middle lamella and the creation and breakage of calcium-pectin cross-links, and G is a bounded function of the intracellular flow velocity $\partial_t u_f$. The condition that G is bounded is natural from
the biological and physical point of view, because the flow velocity in plant tissues is bounded. This condition is also essential for a rigorous mathematical analysis of the model. We assume that as the result of the breakage of a calcium-pectin cross-link by mechanical stresses we obtain one calcium molecule and two galacturonic acid monomers of demethylesterified pectin. A detailed derivation of the chemical reaction term \(g_e \) is given in [39]. See also Remark 2.3 for the detailed form of the reaction terms. We assume a passive flow of calcium between cell walls and cell interior and assume that the exchange of calcium between cell interior and cell walls is facilitated only on parts of the cell membrane \(\Gamma \setminus \tilde{\Gamma} \), i.e.,

\[
c_f = c_e, \quad (D_f \nabla c_f - G(\partial_t u_f)c_f) \cdot n = D_e \nabla c_e \cdot n \quad \text{on} \quad \Gamma \setminus \tilde{\Gamma},
\]

\[
D_e \nabla c_e \cdot n = 0, \quad (D_f \nabla c_f - G(\partial_t u_f)c_f) \cdot n = 0 \quad \text{on} \quad \tilde{\Gamma}.
\]

The regulation of calcium flow by mechanical properties of the cell wall will be considered in future studies.

Calcium-pectin cross-links \(b_{e,3} \) are created by electrostatic and ionic binding between two galacturonic acid monomers of pectin chains and calcium molecules. It is also known that these cross-links are very stable and can be disturbed mainly by thermal treatments and/or mechanical forces; see, e.g., [38, 37]. Thus assuming a constant temperature, the calcium-pectin chemistry can be described as a reaction between calcium molecules and pectins, where the breakage of cross-links depends on the deformation gradient of the cell walls. Hence we assume that the cross-links are disturbed by the mechanical stresses in cell walls and middle lamella; see [39] for a detailed description of the modelling of the calcium-pectin chemistry. A similar approach was used in [41] to model a chemically mediated mechanical expansion of the cell wall of a pollen tube. There are no experimental observations of diffusion of calcium-pectin cross-links \(b_{e,3} \); however, since most calcium-pectin cross-links are not attached to cell wall microfibrils [18], it is possible that cross-links can move inside the cell wall matrix by a very slow diffusion

\[
\partial_t b_{e,3} - \text{div}(D_{b_{e,3}} \nabla b_{e,3}) = g_{b,3} \quad \text{in} \quad \Omega_e,
\]

where \(D_{b_{e,3}} > 0 \) and the reaction term \(g_{b,3} \) models the creation and breakage by mechanical stresses of calcium-pectin cross-links (see Remark 2.3 for a detailed form of \(g_{b,3} \)). For the analysis presented here the diffusion term in the equations for calcium-pectin cross-link density is important. However, the same results can be obtained if one assumes that calcium-pectin cross-links do not diffuse and that the reaction terms in equations for pectin, calcium, and calcium-pectin cross-links depend on a local average of the deformation gradient, reflecting the fact that in a dense pectin network mechanical forces have a nonlocal effect on the calcium-pectin chemistry; see [39].

To describe elastic deformations of plant cell walls and middle lamella, we consider the equations of poroelasticity reflecting the microscopic structure of cell walls and middle lamella permeable to fluid flow:

\[
\rho_e \partial_t^2 u_e - \text{div}(E(b_{e,3})\mathbf{e}(u_e)) + \alpha \nabla p_e = 0 \quad \text{in} \quad \Omega_e,
\]

\[
\rho_p \partial_t p_e - \text{div}(K_p \nabla p_e - \alpha \partial_t u_e) = 0 \quad \text{in} \quad \Omega_e.
\]

Here \(u_e \) denotes the displacement from the equilibrium position, \(\mathbf{e}(u_e) \) stands for the symmetrized gradient of \(u_e \), and \(\rho_e \) denotes the poroelastic wall density. Since we
consider the equations of poroelasticity, one more unknown function that should be determined is the pressure, denoted by \(p_e \). The mass storativity coefficient is denoted by \(\rho_p \), and \(K_p \) denotes the hydraulic conductivity of cell walls and middle lamella. In what follows, we assume that the Biot–Willis constant is \(\alpha = 1 \).

It is observed experimentally that the load-bearing calcium-pectin cross-links reduce cell wall expansion; see, e.g., [51]. Hence elastic properties of cell walls and middle lamella depend on the chemical configuration of pectin and density of calcium-pectin cross-links; see, e.g., [55]. This is reflected in the dependence of the elasticity tensor \(\mathbf{E} \) of the cell wall and middle lamella on the density of calcium-pectin cross-links \(b_{e,3} \). The differences in the elastic properties of cell walls and middle lamella result in the dependence of the elasticity tensor \(\mathbf{E} \) on the spatial variables. Since the properties of calcium-pectin cross-links are changing during the deformation and the stretched cross-links have different impact (stress drive hardening) on the elastic properties of the cell wall matrix from that of newly created cross-links (see, e.g., [11, 36, 43]), we consider a nonlocal-in-time dependence of the Young modulus of the cell wall matrix; see Assumption A1. A similar approach was used in [20] to model the dependence of cell deformations on the concentration of a chemical substance. We assume that the hydraulic conductivity tensor varies between cell wall and middle lamella and, hence, \(K_p \) depends on the spacial variables.

In the cell interior, that is, in \(\Omega_f \), the water flow is modelled by the Stokes system

\[
\rho_f \partial_t^2 u_f - \mu \text{div}(\mathbf{e}(\partial_t u_f)) + \nabla p_f = 0, \quad \text{div} \partial_t u_f = 0 \quad \text{in } \Omega_f,
\]

where \(\partial_t u_f \) denotes the fluid velocity, \(p_f \) the fluid pressure, \(\mu \) the fluid viscosity, and \(\rho_f \) the fluid density.

As transmission conditions between free fluid and poroelastic domains we consider the continuity of normal flux, which corresponds to mass conservation, and the continuity of the normal component of total stress on the interface \(\Gamma \); i.e., the total stress of the poroelastic medium is balanced by the total stress of the fluid, representing the conservation of momentum,

\[
\begin{align*}
(-K_p \nabla p_e + \partial_t u_e) \cdot n &= \partial_t u_f \cdot n \quad \text{on } \Gamma, \\
(E(b_{e,3}) \mathbf{e}(u_e) - p_e I) n &= (\mu \mathbf{e}(\partial_t u_f) - p_f I) n \quad \text{on } \Gamma.
\end{align*}
\]

Also taking into account the channel structure of a cell membrane separating cell interior and cell wall, given by the presence of aquaporins (see, e.g., [14]), we assume that the water flow between the poroelastic cell wall and cell interior is in the direction normal to the interface between the free fluid and the poroelastic medium. Hence we assume the no-slip interface condition, which is appropriate for problems where at the interface the fluid flow in the tangential direction is not allowed (see, e.g., [12]),

\[
\Pi \tau \partial_t u_e = \Pi \tau \partial_t u_f \quad \text{on } \Gamma.
\]

By \(\Pi \tau \) we define the tangential projection of a vector \(w \), i.e., \(\Pi \tau w = w - (w \cdot n)n \), where \(n \) is a normal vector and \(\tau \) indicates the tangential subspace to the boundary. The balance of the normal components of the stress in the fluid phase across the interphase is given by

\[
n \cdot (\mu \mathbf{e}(\partial_t u_f) - p_f I) n = -p_e \quad \text{on } \Gamma.
\]

Notice that the transmission conditions (1) and (2) imply \(E(b_{e,3}) \mathbf{e}(u_e) n \cdot n = 0 \) on \(\Gamma \). The transmission conditions are motivated by the models describing coupling between
Biot and Navier–Stokes or Stokes equations considered in, e.g., [6, 12, 27, 28, 46]. The coupling between elastic deformations and fluid flow is described in the Lagrangian configuration, and hence Γ is a fixed interface between the fluid domain and elastic material. Since in our model we consider only the linear elastic nature of the solid skeleton of the cell walls, the transmission conditions (1) and (2) are the corresponding linearizations of the fluid-solid interface conditions; i.e., $|\text{det}(I + \nabla u_e)|(\mu \mathbf{e}(\partial_t u_f(t, x + u_e)) - p_f(t, x + u_e) I)(I + \nabla u_e)^{-T} n$ is approximated by $(\mu \mathbf{e}(\partial_t u_f(t, x)) - p_f(t, x) I) n$ on Γ, and the first Piola–Kirchhoff stress tensor is equal to the Cauchy stress tensor in the first order approximation.

Then the model for the densities of calcium, pectins, and calcium-pectin cross-links reads as

$$
\begin{align*}
\partial_t b_e &= \text{div}(D_e \nabla b_e) + g_b(c_e, b_e, \mathbf{e}(u_e)) \quad \text{in } \Omega_e, \ t > 0 \\
\partial_t c_e &= \text{div}(D_e \nabla c_e) + g_e(c_e, b_e, \mathbf{e}(u_e)) \quad \text{in } \Omega_e, \ t > 0, \\
\partial_t c_f &= \text{div}(D_f \nabla c_f - G(\partial_t u_f)c_f) + g_f(c_f) \quad \text{in } \Omega_f, \ t > 0, \\
D_b \nabla b_e \cdot n &= P(b_e) \quad \text{on } \Gamma, \ t > 0, \\
c_e &= c_f, \quad D_e \nabla c_e \cdot n = (D_f \nabla c_f - G(\partial_t u_f)c_f) \cdot n \quad \text{on } \Gamma \setminus \Gamma, \ t > 0, \\
D_e \nabla c_e \cdot n &= 0, \quad (D_f \nabla c_f - G(\partial_t u_f)c_f) \cdot n = 0 \quad \text{on } \Gamma, \ t > 0, \\
b_e(0, x) &= b_{e_0}(x), \quad c_e(0, x) = c_0(x) \quad \text{in } \Omega_e, \\
c_f(0, x) &= c_0(x) \quad \text{in } \Omega_f,
\end{align*}
$$

(3)

where $b_e = (b_{e_1}, b_{e_2}, b_{e_3})$, $D_f > 0$, $D_e > 0$, and $D_b = \text{diag}(D_{b_{e_1}}, D_{b_{e_2}}, D_{b_{e_3}})$ with $D_{b_{e_j}} > 0$, $j = 1, 2, 3$, stands for the diagonal matrix of diffusion coefficients for b_{e_1}, b_{e_2}, and b_{e_3}.

For elastic deformations of cell walls and middle lamella and fluid flow inside the cells we have a coupled system of Stokes equations and poroelastic (Biot) equations:

$$
\begin{align*}
\rho_e \partial_t^2 u_e - \text{div}(\mathbf{E}(b_{e_3}) \mathbf{e}(u_e)) + \nabla p_e &= 0 \quad \text{in } \Omega_e, \ t > 0, \\
\rho_p \partial_t p_e - \text{div}(K_p \nabla p_e - \partial_t u_e) &= 0 \quad \text{in } \Omega_e, \ t > 0, \\
\rho_f \partial_t^2 u_f - \mu \text{div}(\mathbf{e}(\partial_t u_f)) + \nabla p_f &= 0 \quad \text{in } \Omega_f, \ t > 0, \\
\text{div } \partial_t u_f &= 0 \quad \text{in } \Omega_f, \ t > 0, \\
(\mathbf{E}(b_{e_3}) \mathbf{e}(u_e) - p_e I) n &= (\mu \mathbf{e}(\partial_t u_f) - p_f I) n \quad \text{on } \Gamma, \ t > 0, \\
\Pi_e \partial_t u_e &= \Pi_e \partial_t u_f, \quad \mathbf{n} \cdot (\mu \mathbf{e}(\partial_t u_f) - p_f I) n = -p_e \quad \text{on } \Gamma, \ t > 0, \\
(-K_p \nabla p_e + \partial_t u_e) \cdot n &= \partial_t u_f \cdot n \quad \text{on } \Gamma, \ t > 0, \\
u_e(0, x) &= u_{e_0}(x), \quad \partial_t u_e(0, x) = u^1_{e_0}(x), \quad p_e(0, x) = p_{e_0}(x) \quad \text{in } \Omega_e, \\
\partial_t u_f(0, x) &= u^1_{f_0}(x) \quad \text{in } \Omega_f.
\end{align*}
$$

(4)

For multiscale analysis of the mathematical model (3)–(4) we derive the nondimensionalized equations from the dimensional model by considering $t = \tilde{t} \tau, \ x = \tilde{x} \tau x$, $b_e = \tilde{b}_{e^*}, c_j = \tilde{c}_j^*, u_j = \tilde{u}_j^*, p_j = \tilde{p}_j^*$, with $j = e, f$, $\mathbf{E} = \tilde{\mathbf{E}} \mathbf{E}^*, K_p = \tilde{K} K_p^*, \mu = \tilde{\mu} \mu^*$, $\rho_p = \tilde{\rho}_p \rho_p^*$, $\rho_e = \tilde{\rho}_e \rho_e^*$, with $j = e, f$, $D_j = \tilde{D} D_j^*$ for $j = b, e, f$, $P(b_e) = \tilde{P} P^*(b_e^*)$, $g_j(c_e, b_e, \mathbf{e}(u_e^*)) = \tilde{g}_j \tilde{b}_j^*(c_e^*, b_e^*, \mathbf{e}(u_e^*))$ for $j = b, e$, and $g_f(c_f) = \tilde{g}_f \tilde{b}_f^*(c_f^*)$. The dimensionless small parameter $\varepsilon = \tilde{\varepsilon} L$ represents the ratio between the representative size of a plant cell l and the considered size of a plant tissue L and reflects the size of the microstructure. For a plant root we can consider $l = 10 \mu m$ and $L = 1 m$, and, hence, ε is of order 10^{-5}. We consider $\tilde{x} = L$, $\tilde{p} = \Lambda \varepsilon$, with $\Lambda = 1 \text{MPa}$, and

© 2017 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license
\[\dot{u} = l. \] For the time scale we take \(\dot{t} = \mu/(\Lambda \varepsilon^2) \), which together with \(\mu = 10^{-2} \text{Pa} \cdot \text{s} \) corresponds approximately to 1.7 min. We also consider \(\tilde{E} = \Lambda, \tilde{K} = \varepsilon^3 \Lambda / (\tilde{\mu}) = \tilde{t}^2 / \tilde{\mu}, \quad \tilde{\rho} = (\Lambda^2) / \varepsilon^3 = \tilde{\mu}^2 / (\Lambda^2 \varepsilon^4 L^2), \quad \tilde{\rho}_p = 1/\Lambda, \quad \tilde{D} = \tilde{\varepsilon}^2 / \varepsilon = \tilde{t}^2 / \tilde{\mu}, \quad \tilde{R} = \tilde{\varepsilon} / \varepsilon = \varepsilon^3 \Lambda / \tilde{\mu}. \]

Hydraulic conductivity \(K_p \) is of order \(10^{-3} \cdot 10^{-8} \text{m} \cdot \text{s}^{-1} \cdot \text{Pa}^{-1} \), and the minimal value of the elasticity tensor is of order 10 MPa [55]. Hence the minimal value of the nondimensionalized elasticity tensor \(E^* \) is approximately 10, and \(K_p^* \sim 0.01 - 0.1 \). The parameters in the inflow boundary condition, i.e., in \(P(b_e) \), are of order \(10^{-7} \text{m} / \text{s} \), and with \(\tilde{R} = 10^{-7} \text{m} / \text{s} \) we obtain the nondimensional parameters in the boundary condition for \(b_e \) to be of order 1. Here we assume that \(\rho_j > 0 \), with \(j = e, p, f, \) are fixed. The case when the density \(\rho_e \) and/or \(\rho_p \) is of order \(\varepsilon^2 \) can be analyzed in the same way as the case when \(\rho_e = 0 \) and \(\rho_p = 0 \), considered in section 9.

To describe the microscopic structure of a plant tissue, we assume that cells in the tissue are distributed periodically and have a diameter of order \(\varepsilon \). The stochastic case will be analyzed in a future paper. We consider a unit cell \(Y = Y_e \cup Y_f \), with \(Y = [0, a_1] \times [0, a_2] \times [0, a_3] \), for \(a_j > 0 \) with \(j = 1, 2, 3 \), where \(Y_e \) represents the cell wall and a part of the middle lamella, and \(Y_f \), with \(Y_f \subset Y \), defines the inner part of a cell. We denote \(\partial Y_f = \Gamma \) and let \(\tilde{\Gamma} \) be an open on \(\Gamma \) regular subset of \(\Gamma \).

Then the time-independent domains \(\Omega_f^e \) and \(\Omega_e^c \), representing the reference (Lagrangian) configuration of the intracellular (cell interior) and intercellular (cell walls and middle lamella) spaces, are defined by

\[
\Omega_f^e = \text{Int} \left(\bigcup_{\xi \in \Xi^e} \varepsilon(\tilde{Y}_f + \xi) \right) \quad \text{and} \quad \Omega_e^c = \Omega \setminus \tilde{\Pi}_f^e,
\]

respectively, where \(\Xi^e = \{ \xi = (a_1\eta_1, a_2\eta_2, a_3\eta_3), \eta = (\eta_1, \eta_2, \eta_3) \in \mathbb{Z}^3 : \varepsilon(\tilde{Y}_f + \xi) \subset \Omega \} \), and \(\Gamma^e = \bigcup_{\xi \in \Xi^c} \varepsilon(\tilde{\Gamma} + \xi) \) defines the boundaries between cell interior and cell walls, \(\tilde{\Gamma}_e = \bigcup_{\xi \in \Xi^e} \varepsilon(\tilde{\Gamma} + \xi) \); see Figure 1.

We shall use the following notation for time-space domains: \(\Omega_s = (0, s) \times \Omega, \quad (\partial \Omega)_s = (0, s) \times \partial \Omega, \quad \Omega_{j,s}^e = (0, s) \times \Omega_f^e \) for \(j = e, f \), \(\Gamma_s^e = (0, s) \times \Gamma_e \), and \(\tilde{\Gamma}_s^e = (0, s) \times \tilde{\Gamma}_e \) for \(s \in [0, T] \).

Neglecting \(* \), we obtain the nondimensionalized microscopic model for plant tissue.

\[
\varepsilon
\rho
\text{Hydraulic conductivity}
\text{value of the elasticity tensor is of order 10MPa [55]. Hence the minimal value of the nondimensionalized elasticity tensor} \ E^* \text{ is approximately 10, and} \ K_p^* \sim 0.01 - 0.1. \text{ The parameters in the inflow boundary condition, i.e., in} \ P(b_e), \text{ are of order } 10^{-7} \text{m/s, and with } \tilde{R} = 10^{-7} \text{m/s we obtain the nondimensional parameters in the boundary condition for } b_e \text{ to be of order 1. Here we assume that } \rho_j > 0, \text{ with } j = e, p, f, \text{ are fixed. The case when the density } \rho_e \text{ and/or } \rho_p \text{ is of order } \varepsilon^2 \text{ can be analyzed in the same way as the case when } \rho_e = 0 \text{ and } \rho_p = 0, \text{ considered in section 9.}

To describe the microscopic structure of a plant tissue, we assume that cells in the tissue are distributed periodically and have a diameter of order } \varepsilon. \text{ The stochastic case will be analyzed in a future paper. We consider a unit cell } Y = Y_e \cup Y_f, \text{ with } Y = [0, a_1] \times [0, a_2] \times [0, a_3], \text{ for } a_j > 0 \text{ with } j = 1, 2, 3, \text{ where } Y_e \text{ represents the cell wall and a part of the middle lamella, and } Y_f, \text{ with } Y_f \subset Y, \text{ defines the inner part of a cell. We denote } \partial Y_f = \Gamma \text{ and let } \tilde{\Gamma} \text{ be an open on } \Gamma \text{ regular subset of } \Gamma.

Then the time-independent domains } \Omega_f^e \text{ and } \Omega_e^c, \text{ representing the reference (Lagrangian) configuration of the intracellular (cell interior) and intercellular (cell walls and middle lamella) spaces, are defined by}

\[
\Omega_f^e = \text{Int} \left(\bigcup_{\xi \in \Xi^e} \varepsilon(\tilde{Y}_f + \xi) \right) \quad \text{and} \quad \Omega_e^c = \Omega \setminus \tilde{\Pi}_f^e,
\]

respectively, where } \Xi^e = \{ \xi = (a_1\eta_1, a_2\eta_2, a_3\eta_3), \eta = (\eta_1, \eta_2, \eta_3) \in \mathbb{Z}^3 : \varepsilon(\tilde{Y}_f + \xi) \subset \Omega \} \text{, and } \Gamma^e = \bigcup_{\xi \in \Xi^c} \varepsilon(\tilde{\Gamma} + \xi) \text{ defines the boundaries between cell interior and cell walls, } \tilde{\Gamma}_e = \bigcup_{\xi \in \Xi^e} \varepsilon(\tilde{\Gamma} + \xi); \text{ see Figure 1.}

We shall use the following notation for time-space domains: } \Omega_s = (0, s) \times \Omega, \quad (\partial \Omega)_s = (0, s) \times \partial \Omega, \quad \Omega_{j,s}^e = (0, s) \times \Omega_f^e \text{ for } j = e, f, \quad \Gamma_s^e = (0, s) \times \Gamma_e, \text{ and } \tilde{\Gamma}_s^e = (0, s) \times \tilde{\Gamma}_e \text{ for } s \in [0, T].

Neglecting \(* \), we obtain the nondimensionalized microscopic model for plant tissue.
biomechanics

\[\partial_t b^\varepsilon = \text{div}(D_b \nabla b^\varepsilon) + g_b(c^\varepsilon, b^\varepsilon, e(u^\varepsilon)) \quad \text{in } \Omega_{e,T}^\varepsilon, \]
\[\partial_t c^\varepsilon = \text{div}(D_c \nabla c^\varepsilon) + g_c(c^\varepsilon, b^\varepsilon, e(u^\varepsilon)) \quad \text{in } \Omega_{e,T}^\varepsilon, \]
\[\partial_t c^f = \text{div}(D_f \nabla c^f - G(\partial_t u^f) c^f_j) + g_f(c^f_j) \quad \text{in } \Omega_{f,T}^\varepsilon, \]
\[D_b \nabla b^\varepsilon \cdot n = \varepsilon P(b^\varepsilon) \quad \text{on } \Gamma_{T}^\varepsilon, \]
\[D_c \nabla c^\varepsilon \cdot n = (D_f \nabla c^f_j - G(\partial_t u^f_j) c^f_j) \cdot n \quad \text{on } \Gamma_{T}^\varepsilon \setminus \bar{\Gamma}_{T}^\varepsilon, \]
\[D_c \nabla c^\varepsilon \cdot n = 0, \quad (D_f \nabla c^f_j - G(\partial_t u^f_j) c^f_j) \cdot n = 0 \quad \text{on } \bar{\Gamma}_{T}^\varepsilon, \]
\[b^\varepsilon(0, x) = b_0(x), \quad c^\varepsilon(0, x) = c_0(x) \quad \text{in } \Omega_e^\varepsilon, \]
\[c^f_j(0, x) = c_0(x) \quad \text{in } \Omega_f^\varepsilon. \]

and

\[\rho_e \partial_t^2 u^\varepsilon - \text{div}(\mathbf{E}(b^\varepsilon) e(u^\varepsilon)) + \nabla p^\varepsilon = 0 \quad \text{in } \Omega_{e,T}^\varepsilon, \]
\[\rho_p \partial_t p^\varepsilon - \text{div}(K_p^\varepsilon \nabla p^\varepsilon - \partial_t u^\varepsilon) = 0 \quad \text{in } \Omega_{e,T}^\varepsilon, \]
\[\rho_f \partial_t^2 u^f_j - \varepsilon^2 \mu \text{div}(e(\partial_t u^f_j)) + \nabla p^f_j = 0 \quad \text{in } \Omega_{f,T}^\varepsilon, \]
\[\partial_t u^f_j = 0 \quad \text{in } \Omega_{f,T}^\varepsilon. \]

(6)

\[\mathbf{E}(b^\varepsilon) e(u^\varepsilon) \quad \text{in } \Omega_{e,T}^\varepsilon, \]
\[\Pi_{e} \partial_t u^\varepsilon = \Pi_{f} \partial_t u^f_j, \quad n \cdot (\varepsilon^2 \mu e(\partial_t u^f_j) - p^f_j I) n = -p^\varepsilon \quad \text{on } \Gamma_{T}^\varepsilon, \]
\[(-K_p^\varepsilon \nabla p^\varepsilon + \partial_t u^\varepsilon) \cdot n = \partial_t u^f_j \cdot n \quad \text{on } \Gamma_{T}^\varepsilon, \]
\[u^\varepsilon(0, x) = u_{e0}(x), \quad \partial_t u^\varepsilon(0, x) = u_{e0}^1(x), \quad p^\varepsilon(0, x) = p_{e0}(x) \quad \text{in } \Omega_e^\varepsilon, \]
\[\partial_t u^f_j(0, x) = u_{f0}^1(x) \quad \text{in } \Omega_f^\varepsilon. \]

On the external boundaries we prescribe the following force and flux conditions:

\[D_b \nabla b^\varepsilon \cdot n = F_b(b^\varepsilon), \quad D_c \nabla c^\varepsilon \cdot n = F_c(c^\varepsilon) \quad \text{on } (\partial \Omega)_T, \]
\[\mathbf{E}(b^\varepsilon) e(u^\varepsilon) \quad \text{on } (\partial \Omega)_T, \]
\[(K_p^\varepsilon \nabla p^\varepsilon - \partial_t u^\varepsilon) \cdot n = F_p \quad \text{on } (\partial \Omega)_T. \]

(8)

The elasticity and permeability tensors are defined by \(Y \)-periodic functions

\[\mathbf{E}(x, \xi) = \mathbf{E}(x/\varepsilon, \xi) \quad \text{and} \quad K_p(x) = K_p(x, x/\varepsilon), \]

where \(\mathbf{E}(\cdot, \xi) \) and \(K_p(x, \cdot) \) are \(Y \)-periodic for a.a. \(\xi \in \mathbb{R} \) and \(x \in \Omega \).

We emphasize that the diffusion coefficients \(D_b, D_c, \) and \(D_f \) in (6) are supposed to be constant just for presentation simplicity. The method developed in this paper also applies to the case of nonconstant uniformly elliptic diffusion coefficients.

We suppose the following conditions hold:

\textbf{A1. Elasticity tensor} \(\mathbf{E}(y, \zeta) = (E_{ijkl}(y, \zeta))_{1 \leq i,j,k,l \leq 3} \) satisfies \(E_{ijkl} = E_{klij} = E_{ijlk} = E_{ijkl} \) and \(\alpha_1 |A|^2 \leq \mathbf{E}(y, \zeta) A \cdot A \leq \alpha_2 |A|^2 \) for all symmetric matrices \(A \in \mathbb{R}^{3 \times 3}, \zeta \in \mathbb{R}_+, \) and \(y \in Y, \) and for some \(\alpha_1 \) and \(\alpha_2 \) such that \(0 < \alpha_1 \leq \alpha_2 < \infty. \)

\(\mathbf{E}(y, \zeta) = \mathbf{E}_1(y, \mathcal{F}(\zeta)), \) where

\[\mathbf{E}_1 \in C_{\text{per}}(Y; C_0^2(\mathbb{R})) \quad \text{and} \quad \mathcal{F}(\zeta) = \int_0^t \kappa(t - \tau) \zeta(\tau, x) d\tau, \]

with a smooth function \(\kappa : \mathbb{R}_+ \to \mathbb{R}_+ \) such that \(\kappa(0) = 0, \) and \(x \in \Omega. \)
A2. $K_p \in C(\mathbb{R}; L^p(\overline{Y}))$ and $K_p(x, y) \eta \cdot \eta \geq k_1|\eta|^2$ for $\eta \in \mathbb{R}^3$, a.a. $y \in Y$ and $x \in \Omega$, and $k_1 > 0$.

A3. G is a Lipschitz continuous function on \mathbb{R}^3 such that $|G(r)| \leq R$ for some $R > 0$ and all $r \in \mathbb{R}^3$.

A4. For functions g_b, g_e, f_j, P_b, and F_c we assume that

$$g_b \in C(\mathbb{R} \times \mathbb{R}^3 \times \mathbb{R}^6; \mathbb{R}^3), \quad g_e \in C(\mathbb{R} \times \mathbb{R}^3 \times \mathbb{R}^6), \quad F_b, P \in C(\mathbb{R}^3; \mathbb{R}^3),$$

and F_c and f_j are Lipschitz continuous. Moreover, the following estimates hold:

$$|g_b(s, r, \xi)| \leq C_1(1 + |s| + |r|) + C_2|r||\xi|,$$

$$|g_e(s, r, \xi)| \leq C_3(1 + |s| + |r|) + C_4(|s| + |r|)|\xi|,$$

$$|F_b(r)| + |P(r)| \leq C(1 + |r|),$$

$$|F_c(s)| + |g_j(s)| \leq C(1 + |s|),$$

where $s \in \mathbb{R}^3$, $r \in \mathbb{R}^3$, and ξ is a symmetric 3×3 matrix. Here and in what follows we identify the space of symmetric 3×3 matrices with \mathbb{R}^6.

A5. $u_{e_o} \in L^\infty(\Omega)^3$, $c_0 \in L^\infty(\Omega)$, and $b_{e_o}, c_0 \geq 0$, $c_0 \geq 0$ a.e. in Ω, where $j = 1, 2, 3$. $u_{e_o}^n \in H^1(\Omega)^3$, $u_{f_j}^n \in H^2(\Omega)^3$, and $\text{div} u_{f_j}^n = 0$ in Ω_f. $u_{e_o}^\epsilon \in H^1(\Omega_e)^3$, $p_{e_o}^\epsilon \in H^1(\Omega)$ are defined as solutions of

$$\text{div}(\mathbf{E}(b_{e_o}) \mathbf{u}(u_{e_o})) = f_u \quad \text{in } \Omega_e,$$

$$\Pi_r \mathbf{E}(b_{e_o}) \mathbf{u}(u_{e_o}) = \epsilon^2 \mu \Pi_r (\mathbf{u}(u_{f_j})) \quad \text{on } \Gamma^e,$$

$$n \cdot \mathbf{E}(b_{e_o}) \mathbf{u}(u_{e_o}) = 0 \quad \text{on } \Gamma^e, \quad u_{e_o}^\epsilon = 0 \quad \text{on } \partial \Omega,$$

$$\text{div}(K_p \nabla p_{e_o}^\epsilon) = f_p \quad \text{in } \Omega, \quad p_{e_o}^\epsilon = 0 \quad \text{on } \partial \Omega,$$

for given $f_u \in L^2(\Omega)^3$ and $f_p \in L^2(\Omega)$.

$$F_{p_o} \in H^1(0, T; L^2(\partial \Omega)), \quad F_{u} \in H^2(0, T; L^2(\partial \Omega)),$$

$$F_{p_o} \in H^1(0, T; L^2(\partial \Omega)), \quad F_{u} \in H^2(0, T; L^2(\partial \Omega)),$$

Remark 2.1. Under the assumptions on $u_{e_o}^\epsilon$ and $p_{e_o}^\epsilon$ by the standard homogenization results, we obtain

$$\hat{u}_{e_o}^\epsilon \to u_{e_o}, \quad p_{e_o}^\epsilon \to p_{e_o} \quad \text{strongly in } L^2(\Omega),$$

$$\mathbf{e}(u_{e_o}) \to \mathbf{e}(u_{e_o}) + \mathbf{e}(u_{e_o}) \quad \text{strongly two-scale, } \hat{u}_{e_o} \in L^2(\Omega; H^1(\Omega_e)/\mathbb{R})^3,$$

where \hat{u}_{e_o} is an extension of $u_{e_o}^\epsilon$, and $u_{e_o} \in H^1(\Omega)^3$ and $p_{e_o} \in H^1(\Omega)$ are solutions of the corresponding macroscopic (homogenized) equations.
Remark 2.2. Our approach also applies to the case when the initial velocity \(u_{f0}^1 \) has the form \(u_{f0}^1(x) = U_{f0}^1(x, x/\varepsilon) \), where the vector function \(U_{f0}^1(x, y) \) is periodic in \(y \), sufficiently regular, and such that \(\text{div}_x U_{f0}^1(x, y) = 0 \), \(\text{div}_y U_{f0}^1(x, y) = 0 \).

Remark 2.3. The reaction terms for \(c^e_f, b^e_{c,1}, b^e_{c,2}, b^e_{c,3} \), and \(c^e \) can be considered in the following form:

\[
\begin{align*}
 g_f(c^e_f) &= -\mu_2 c^e_f, \quad g_b(c^e, b^e_{c,1}, e(u^e_c)) = -\mu_1 b_{c,1}, \\
 g_b(c^e, b^e_{c,2}, e(u^e_c)) &= \mu_1 b_{c,1} - 2r_{dc} b_{c,2}^e c^e + 2R_b(b_{c,3}^e)(\text{tr}E^e(b_{c,3}^e)e(u^e_c))^+ - r_b b_{c,2}, \\
 g_b(c^e, b^e_{c,3}, e(u^e_c)) &= r_{dc} b_{c,2}^e c^e - R_b(b_{c,3}^e)(\text{tr}E^e(b_{c,3}^e)e(u^e_c))^+, \\
 g_b(c^e, b^e_{c,3}, e(u^e_c)) &= -r_{dc} b_{c,2}^e c^e + R_b(b_{c,3}^e)(\text{tr}E^e(b_{c,3}^e)e(u^e_c))^+,
\end{align*}
\]

where \(\mu_1, \mu_2, r_{dc}, r_b, \kappa > 0 \), and \(R_b(b_{c,3}^e) \) is a Lipschitz continuous function of calcium-pectin cross-links density, e.g., \(R_b(b_{c,3}^e) = r b_{c,3}^e \) with some constant \(r > 0 \). We assume that the concentration of the enzyme PME is constant, and hence methylesterified pectin can decay, and through the interaction between two galacturonic acid groups of pectin chains and a calcium molecule a calcium-pectin cross-link is produced. If a cross-link breaks due to mechanical forces, we regain two acid groups of demethylesterified pectin and one calcium molecule. We consider the decay of calcium inside the cells. The positive part of the trace of the elastic stress reflects the fact that extension rather than compression causes the breakage of calcium-pectin cross-links. See [39] for more details on the derivation of a microscopic model for the biomechanics of a plant cell wall.

In what follows we use the notation \(\langle \cdot, \cdot \rangle_{H^1(A)'} \) for the duality product between \(L^2(0, s; H^1(A))' \) and \(L^2(0, s; H^1(A)) \), and

\[
\langle \phi, \psi \rangle_A = \int_0^s \int_A \phi \psi dx dt \quad \text{for} \quad \phi \in L^q(0, s; L^p(A)) \text{ and } \psi \in L^{q'}(0, s; L^{p'}(A)),
\]

where \(1/q + 1/q' = 1 \) and \(1/p + 1/p' = 1 \) for any \(s > 0 \) and domain \(A \subset \mathbb{R}^3 \).

We also use the notation

\[
c^e = \begin{cases}
 e^e & \text{in } \Omega^e_{c,T}, \\
 e^f & \text{in } \Omega^f_{c,T}.
\end{cases}
\]

Next we define a weak solution of the coupled system (6)–(8).

Definition 2.4. Functions.

\[
\begin{align*}
 u^e_{c} & \in [L^2(0, T; H^1(\Omega^e_c)) \cap H^2(0, T; L^2(\Omega^e_c))]^3, \\
 p^e_{c} & \in L^2(0, T; H^1(\Omega^e_c)) \cap H^1(0, T; L^2(\Omega^e_c)), \\
 \partial_t u^e_{f} & \in [L^2((0, T) \times H^1(\Omega^e_{f})) \cap H^1((0, T) \times L^2(\Omega^e_{f}))]^3, \\
 p^e_{f} & \in L^2((0, T) \times \Omega^e_{f}), \\
 \Pi_x, \partial_t u^e_{c} = \Pi_x, \partial_t u^e_{f} & \quad \text{on } \Gamma_T^f, \quad \text{div } \partial_t u^e_{f} = 0 \quad \text{in } \Omega^e_{f,T},
\end{align*}
\]

and

\[
\begin{align*}
 b^e_{c} & \in [L^2(0, T; H^1(\Omega^e_c)) \cap L^\infty(0, T; L^2(\Omega^e_c))]^3, \\
 c^e & \in L^2(0, T; H^1(\Omega^e_c) \cap L^\infty(0, T; H^1(\Omega^e_c)))
\end{align*}
\]
are a weak solution of (6)–(8) if

(i) \((u^ε, p^ε, \partial_t u^ε, p^ε)\) satisfy the integral relation

\[
\langle \rho^c \partial_t^2 u^ε, \phi \rangle_{\Omega^ε_T} + \langle (E^ε(b^ε, c^ε)) e(u^ε), e(\phi) \rangle_{\Omega^ε_T} + \langle \nabla p^ε, \phi \rangle_{\Omega^ε_T} + \langle \nabla \mu, \phi \rangle_{\Omega^ε_T} + \langle \nabla \sigma, \phi \rangle_{\Omega^ε_T} + \langle \nabla \tau, \phi \rangle_{\Omega^ε_T}
\]

(9) \(+ \langle \rho^p \partial_t p^ε, \psi \rangle_{\Omega^ε_T} + \langle \langle \partial_t u^ε \cdot \eta, \psi \rangle_{\Omega^ε_T} + \langle \partial_t u^ε \cdot n, \psi \rangle_{\Omega^ε_T} - \langle p^ε, \eta \cdot n \rangle_{\Gamma_T^ε} + \langle \rho_f \partial_t u^f, \eta \rangle_{\Omega^f_T} + \langle \varepsilon \mu(\partial_t u^f), \varepsilon(\eta) \rangle_{\Omega^f_T} \rangle = \langle F^c, \phi \rangle_{(\partial \Omega^ε_T)} + \langle F^p, \psi \rangle_{(\partial \Omega^ε_T)}
\]

for all \(\psi \in L^2(0, T; H^1(\Omega^ε_T))\), \(\phi \in L^2(0, T; H^1(\Omega^ε_T))^3\), and \(\eta \in L^2(0, T; H^1(\Omega^ε_T))^3\), with \(\Pi_\varepsilon \phi = \Pi_\varepsilon \eta \) on \(\Gamma^ε_T\) and \(\text{div} \eta = 0 \) in \((0, T) \times \Omega^f_T\),

(ii) \((b^ε, c^ε)\) satisfy the integral relations

\[
\langle \partial_t b^ε_1, \varphi_1 \rangle_{H^1(\Omega^ε_T)} + \langle D_e \nabla b^ε_1, \nabla \varphi_1 \rangle_{\Omega^ε_T} - \langle g_0(b^ε_1, b^ε_1, e(u^ε)), \varphi_1 \rangle_{\Omega^ε_T} = \varepsilon \langle P(b^ε), \varphi_1 \rangle_{\Gamma^ε_T} + \langle F_0(b^ε), \varphi_1 \rangle_{(\partial \Omega^ε_T)}
\]

and

\[
\langle \partial_t c^ε_2, \varphi_2 \rangle_{H^1(\Omega^ε_T)} + \langle D_e \nabla c^ε_2, \nabla \varphi_2 \rangle_{\Omega^ε_T} - \langle g_0(c^ε_2, b^ε_1, e(u^ε)), \varphi_2 \rangle_{\Omega^ε_T} = \langle F_0(c^ε_2), \varphi_2 \rangle_{(\partial \Omega^ε_T)}
\]

(10) \(+ \langle \partial_t c^ε_2, \varphi_2 \rangle_{H^1(\Omega^ε_T)} + \langle D_e \nabla c^ε_2, \nabla \varphi_2 \rangle_{\Omega^ε_T} - \langle g_0(c^ε_2, b^ε_1, e(u^ε)), \varphi_2 \rangle_{\Omega^ε_T} \)

for all \(\varphi_1 \in L^2(0, T; H^1(\Omega^ε_T))^3\) and \(\varphi_2 \in L^2(0, T; H^1(\Omega \setminus \tilde{\Omega}^ε))\),

(iii) the corresponding initial conditions are satisfied. Namely, as \(t \to 0\),

\[
\begin{align*}
u^ε(t, \cdot) &\to u^ε_{00}(\cdot) \quad \text{and} \quad \partial_t u^ε(t, \cdot) \to u^ε_{00}(\cdot) \quad \text{in} \quad L^2(\Omega^ε_T)^3, \\
p^ε(t, \cdot) &\to p^ε_{00}(\cdot) \quad \text{in} \quad L^2(\Omega^ε_T)^3, \\
\partial_t u^f(t, \cdot) &\to u^f_{00}(\cdot) \quad \text{in} \quad L^2(\Omega^f_T)^3, \\
b^ε(t, \cdot) &\to b^ε_{00}(\cdot) \quad \text{in} \quad L^2(\Omega^ε_T)^3, \\
c^ε(t, \cdot) &\to c^ε_{00}(\cdot) \quad \text{in} \quad L^2(\Omega)^3.
\end{align*}
\]

3. A priori estimates, existence and uniqueness of a solution of the microscopic problem. We begin by proving the existence of a weak solution of the microscopic model (6)–(8) and uniform in \(\varepsilon\) a priori estimates. In order to obtain uniform in \(\varepsilon\) estimates, we shall extend \(H^1\)-functions from a perforated domain into the whole domain.

Lemma 3.1.

- There exist extensions \(\tilde{b}^ε\) and \(\tilde{c}^ε\) of \(b^ε\) and \(c^ε\), respectively, from \(L^2(0, T; H^1(\Omega^ε_T))\) to \(L^2(0, T; H^1(\Omega))\) such that

\[
\|\tilde{b}^ε\|_{L^2(\Omega_T)} \leq C\|b^ε\|_{L^2(\Omega^ε_T)}, \quad \|\nabla \tilde{b}^ε\|_{L^2(\Omega_T)} \leq C\|\nabla b^ε\|_{L^2(\Omega^ε_T)},
\]

(12) \(\|\tilde{c}^ε\|_{L^2(\Omega_T)} \leq C\|c^ε\|_{L^2(\Omega^ε_T)}, \quad \|\nabla \tilde{c}^ε\|_{L^2(\Omega_T)} \leq C\|\nabla c^ε\|_{L^2(\Omega^ε_T)}\).

- There exists an extension \(\tilde{c}^ε\) of \(c^ε\) from \(L^2(0, T; H^1(\tilde{\Omega}^ε_T))\) to \(L^2(0, T; H^1(\Omega))\) such that

\[
\|\tilde{c}^ε\|_{L^2(\Omega_T)} \leq C\|c^ε\|_{L^2(\tilde{\Omega}^ε_T)}, \quad \|\nabla \tilde{c}^ε\|_{L^2(\Omega_T)} \leq C\|\nabla c^ε\|_{L^2(\tilde{\Omega}^ε_T)}.
\]

Here the constant \(C\) is independent of \(\varepsilon\), and \(\tilde{\Omega}^ε_T = \Omega \setminus \tilde{\Omega}^ε\), with \(\tilde{\Omega}^ε = \bigcup_{\xi \in \Omega} \varepsilon(\tilde{\Gamma}^0 \cap Y_ε + \xi)\), where \(\tilde{\Gamma}^0\) is a \(\delta\)-neighborhood of \(\tilde{\Gamma}\) such that \(\tilde{\Gamma}^0 \cap \partial Y = \emptyset\) and \(Y \setminus \tilde{\Gamma}^0 \cap Y_ε\) is a connected set.
Sketch of proof. The assumptions on the geometry of Ω_ε^c and $\Omega_{\varepsilon,j}^c$ and a standard extension operator (see, e.g., [1, 16]) ensure the existence of extensions of b_{ε}^c, c_{ε}^j, and c^e satisfying estimates (12), (13), and (14), respectively.

Remark. Notice that we have a jump in c^e across $\tilde{\Gamma}$. Thus in order to construct an extension of c^e in $H^1(\Omega)$ we have to consider c^e outside a δ-neighborhood of $\tilde{\Gamma}$. Also since we would like to have an extension of c_f^e from $\Omega_{\varepsilon,fj}^c$ to Ω, we have to consider $\tilde{\Gamma}_{\delta} \cap Y_{\varepsilon}$; see Figure 1.

Notice that, since $Y_f \subset Y$ with $\partial Y_f \cap \partial Y = \emptyset$ and $\Gamma = \partial Y_f$, for $\delta > 0$ sufficiently small $\tilde{\Gamma}_{\delta}$ will satisfy the assumption of the lemma.

Lemma 3.2. Under assumptions A1–A5, solutions of the microscopic problem (6)–(8) satisfy the following a priori estimates:

For elastic deformation, pressures, and flow velocity we have

\begin{align}
\|b_{\varepsilon}^c\|_{L^\infty(0,T;H^1(\Omega_\varepsilon^c))} + \|\partial_t u_{\varepsilon}^c\|_{L^\infty(0,T;H^1(\Omega_\varepsilon^c))} + \|\partial^2_t u_{\varepsilon}^c\|_{L^\infty(0,T;L^2(\Omega_\varepsilon^c))} &\leq C, \\
\|p_{\varepsilon}^c\|_{L^2(0,T;H^1(\Omega_\varepsilon^c))} + \|\partial_t p_{\varepsilon}^c\|_{L^2(0,T;L^2(\Omega_\varepsilon^c))} + \|\partial^2_t p_{\varepsilon}^c\|_{L^2(0,T;H^1(\Omega_\varepsilon^c))} &\leq C, \\
\|\partial_t u_{\varepsilon}^f\|_{L^\infty(0,T;L^2(\Omega_{\varepsilon,f}^c))} + \|\partial^2_t u_{\varepsilon}^f\|_{L^\infty(0,T;L^2(\Omega_{\varepsilon,f}^c))} + \varepsilon \|\nabla \partial_t u_{\varepsilon}^f\|_{H^1(0,T;L^2(\Omega_{\varepsilon,f}^c))} &+ \|p_{\varepsilon}^f\|_{L^2(\Omega_{\varepsilon,f}^c)} \leq C.
\end{align}

For the densities we have

\begin{align}
b_{\varepsilon,i}^c &\geq 0, \quad c_{\varepsilon}^j \geq 0 \quad \text{a.e. in } \Omega_{\varepsilon,f}, \quad c_{\varepsilon}^f \geq 0 \quad \text{a.e. in } \Omega_{\varepsilon,fj}^c, \\
\|b_{\varepsilon}^c\|_{L^2(0,T;H^1(\Omega_\varepsilon^c))} + \varepsilon^{1/2}\|b_{\varepsilon}^c\|_{L^2(\Gamma_{\varepsilon,f}^c)} + \|b_{\varepsilon}^c\|_{L^\infty(0,T;L^2(\Omega_\varepsilon^c))} &\leq C, \\
\|c_{\varepsilon}^j\|_{L^2(0,T;H^1(\Omega_{\varepsilon,f}^c))} + \|c_{\varepsilon}^j\|_{L^\infty(0,T;L^2(\Omega_{\varepsilon,f}^c))} + \|c_{\varepsilon}^j\|_{L^\infty(0,T;L^4(\Omega_{\varepsilon,f}^c))} &\leq C, \quad j = e, f,
\end{align}

and

\begin{align}
\|\theta_{\varepsilon} b_{\varepsilon}^c - b_{\varepsilon}^c\|_{L^2((0,T)\times\Omega_{\varepsilon,f})} + \|\theta_{\varepsilon} c_{\varepsilon}^j - c_{\varepsilon}^j\|_{L^2((0,T)\times\Omega_{\varepsilon,f}^c)} &\leq C\varepsilon^{1/4}, \quad j = e, f,
\end{align}

for $\hat{T} \in (0, T - h)$, where $\theta_{\varepsilon} v(t, x) = v(t + h, x)$ for $(t, x) \in (0, T - h) \times \Omega_{\varepsilon,f}^c$, with $j = e, f$, and the constant C is independent of ε.

Proof. The nonnegativity of c_{ε}^j, c_{ε}^f, and b_{ε}^c is justified in the proof of Theorem 3.3 on the existence and uniqueness of a weak solution of the microscopic problem (6)–(8). To derive the estimates in (15), we first take $(\partial_t u_{\varepsilon}^e, p_{\varepsilon}^e, \partial_t u_{\varepsilon}^f)$ as test functions in (9) and obtain

\begin{align}
\rho_c \|\partial_t u_{\varepsilon}^e(s)\|_{L^2(\Omega_\varepsilon^c)}^2 + \langle \mathbf{E}^c(b_{\varepsilon,3}^c)\mathbf{e}(u_{\varepsilon}^c(s)), \mathbf{e}(u_{\varepsilon}^c(s))\rangle_{\Omega_\varepsilon^c} &- \langle \partial_t \mathbf{E}^c(b_{\varepsilon,3}^c)\mathbf{e}(u_{\varepsilon}^c), \mathbf{e}(u_{\varepsilon}^c)\rangle_{\Omega_\varepsilon^c, s} \\
+ 2\langle \nabla p_{\varepsilon}^c, \partial_t u_{\varepsilon}^c\rangle_{\Omega_\varepsilon^c, s} + \mu_{\varepsilon} \|\partial_t u_{\varepsilon}^e\|_{L^2(\Omega_\varepsilon^c)}^2 &+ 2\langle K_{\varepsilon}^e \nabla \mathbf{e}(u_{\varepsilon}^e), \nabla \mathbf{e}(u_{\varepsilon}^e)\rangle_{\Omega_\varepsilon^c, s} - 2\langle \partial_t u_{\varepsilon}^e, \nabla \mathbf{e}(u_{\varepsilon}^e)\rangle_{\Omega_\varepsilon^c, s} \\
+ \rho_f \|\partial_t u_{\varepsilon}^f(s)\|_{L^2(\Omega_{\varepsilon,f}^c)}^2 + 2\varepsilon^2 \mu \|\mathbf{e}(\partial_t u_{\varepsilon}^f)\|_{L^2(\Omega_{\varepsilon,f}^c)}^2 &- 2\langle F_{\varepsilon}^e, \partial_t u_{\varepsilon}^e\rangle_{\Omega_\varepsilon^c, s} + 2\langle F_{\varepsilon}^f, \partial_t u_{\varepsilon}^f\rangle_{\Omega_{\varepsilon,f}^c, s} + \rho_c \|\partial_t u_{\varepsilon}^0\|_{L^2(\Omega^c_\varepsilon)}^2 \\
+ \rho_f \|\partial_t u_{\varepsilon}^f(0)\|_{L^2(\Omega_{\varepsilon,f}^c)}^2 &+ \rho_f \|\partial_t u_{\varepsilon}^f(0)\|_{L^2(\Omega_{\varepsilon,f}^c)}^2 + \langle \mathbf{E}^c(b_{\varepsilon,3}^c)\mathbf{e}(u_{\varepsilon}^c(0)), \mathbf{e}(u_{\varepsilon}^c(0))\rangle_{\Omega_\varepsilon^c}
\end{align}

for $s \in (0, T]$. As was defined just after formula (5), $\Omega_{\varepsilon,j,s} := (0, s) \times \Omega_{\varepsilon,j}^c$ for $j = e, f$.

\c{c} 2017 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license
Using assumptions A1, A2, and A5 yields
\[\| \partial_t u_{3}^{\varepsilon}(s) \|_{L^2(\Omega')}^2 + \| e(u_{3}^{\varepsilon}(s)) \|_{L^2(\Omega')}^2 + \| \partial_t u_{3}^{\varepsilon}(s) \|_{L^2(\Omega')}^2 + \varepsilon^2 \| e(\partial_t u_{3}^{\varepsilon}) \|_{L^2(\Omega')}^2 + p_{3}^{\varepsilon}(s) \|_{L^2(\Omega')}^2 + \| \nabla p_{3}^{\varepsilon}(s) \|_{L^2(\Omega')}^2 \]
\[\leq \delta \left[\| u_{3}^{\varepsilon}(s) \|_{L^2(\Omega)}^2 + \| p_{3}^{\varepsilon}(s) \|_{L^2(\partial \Omega)}^2 + \| \partial_t E_{\varepsilon}(b_{3}^{\varepsilon}(s)) \|_{\Omega S}^2 \right] + C_{1} (| \partial_t E_{\varepsilon}(b_{3}^{\varepsilon}(s)) |_{\Omega S}^2 + \| \partial_t F_{v} \|_{L^2(\partial \Omega)}^2) + C_{2} \]
for \(s \in (0, T] \). Under our standing assumptions A1 on E, we have
\[\| \partial_t E_{\varepsilon}(b_{3}^{\varepsilon}(s)) \|_{L^{\infty}(s, T) \times \Omega S} \leq C. \]
Applying the trace and Korn inequalities [33] and using extension properties of \(u_{3}^{\varepsilon} \), we obtain
\[\| u_{3}^{\varepsilon}(s) \|_{L^2(\partial \Omega)} \leq C \left[\| u_{3}^{\varepsilon}(s) \|_{L^2(\Omega')} + \| e(u_{3}^{\varepsilon}(s)) \|_{L^2(\Omega')} \right]. \]
Our assumptions A5 on the initial conditions ensure
\[\| u_{3}^{\varepsilon}(s) \|_{L^2(\Omega')} \leq \| \partial_t u_{3}^{\varepsilon} \|_{L^2(\Omega')} + \| u_{3}^{\varepsilon} \|_{L^2(\Omega')} \leq C + \| \partial_t u_{3}^{\varepsilon} \|_{L^2(\Omega')} \]
for \(s \in (0, T] \). Then applying the trace and Gronwall inequalities in (18) yields the following estimate:
\[\| \partial_t u_{3}^{\varepsilon} \|_{L^2(0, T; L^2(\Omega'))} + \| e(u_{3}^{\varepsilon}) \|_{L^2(0, T; L^2(\Omega'))} + \| p_{3}^{\varepsilon} \|_{L^2(0, T; L^2(\Omega'))} + \| \nabla p_{3}^{\varepsilon} \|_{L^2(0, T; L^2(\Omega'))} + \| \partial_t u_{3}^{\varepsilon} \|_{L^2(0, T; L^2(\Omega'))} \leq C, \]
where the constant \(C \) is independent of \(\varepsilon \). Using the Korn inequality [33] for deformation and velocity, together with a scaling argument, we obtain
\[\| u_{3}^{\varepsilon} \|_{L^2(0, T; L^2(\Omega'))} + \| \nabla u_{3}^{\varepsilon} \|_{L^2(0, T; L^2(\Omega'))} \leq C_{1} \left(\| u_{3}^{\varepsilon} \|_{L^2(0, T; L^2(\Omega'))} + \| u_{3}^{\varepsilon} \|_{L^2(0, T; L^2(\Omega'))} \right) \]
\[\| \partial_t u_{3}^{\varepsilon} \|_{L^2(0, T; L^2(\Omega'))} + \| \nabla u_{3}^{\varepsilon} \|_{L^2(0, T; L^2(\Omega'))} \leq C_{2} (\varepsilon | e(\partial_t u_{3}^{\varepsilon}) |_{L^2(0, T; L^2(\Omega'))} + \| \partial_t u_{3}^{\varepsilon} \|_{L^2(0, T; L^2(\Omega'))} \leq C. \]
Differentiating all equations in (7) with respect to time \(t \) and taking \((\partial_t^2 u_{3}^{\varepsilon}, \partial_t p_{3}^{\varepsilon}, \partial_t^2 u_{3}^{\varepsilon}) \) as test functions in the resulting equations, we obtain
\[\begin{align*}
\rho_{c}^{\varepsilon} \partial_t^2 u_{3}^{\varepsilon} & + (E_{\varepsilon}(b_{3}^{\varepsilon}(s))) \partial_t u_{3}^{\varepsilon} + e(\partial_t u_{3}^{\varepsilon}(s)) \partial_t u_{3}^{\varepsilon} \Omega S - \rho_{c}^{\varepsilon} \| \partial_t^2 u_{3}^{\varepsilon} \|_{L^2(\Omega')}^2 \\
+ \rho_{p}^{\varepsilon} \partial_t p_{3}^{\varepsilon} & + 2 \langle K_{p}^{\varepsilon} \Delta \partial_t p_{3}^{\varepsilon}, \nabla \partial_t^2 u_{3}^{\varepsilon} \Omega S - \rho_{p}^{\varepsilon} \| \partial_t p_{3}^{\varepsilon} \|_{L^2(\Omega')}^2 \\
+ \rho_{f}^{\varepsilon} \partial_t^2 u_{3}^{\varepsilon} & + 2 \varepsilon^2 \| e(\partial_t^2 u_{3}^{\varepsilon}) \|_{L^2(\Omega')}^2 - \rho_{f}^{\varepsilon} \| \partial_t^2 u_{3}^{\varepsilon} \|_{L^2(\Omega')}^2 \\
& = \langle E_{\varepsilon}(b_{3}^{\varepsilon}(0)) \partial_t u_{3}^{\varepsilon}(0), e(\partial_t u_{3}^{\varepsilon}(0)) \rangle_{\Omega S} + 2 \langle \partial_t E_{\varepsilon}(b_{3}^{\varepsilon}(s)), e(\partial_t u_{3}^{\varepsilon}(s)) \rangle_{\Omega S} \\
& - 2 \langle \partial_t E_{\varepsilon}(b_{3}^{\varepsilon}(0)), e(\partial_t u_{3}^{\varepsilon}(0)) \rangle_{\Omega S} + 2 \langle \partial_t F_{v}, \partial_t^2 u_{3}^{\varepsilon} \rangle_{(\partial \Omega)}, \\
& - \langle \partial_t^2 E_{\varepsilon}(b_{3}^{\varepsilon}), e(u_{3}^{\varepsilon}) \rangle_{\Omega S} + \partial_t E_{\varepsilon}(b_{3}^{\varepsilon}) \partial_t u_{3}^{\varepsilon} + \partial_t u_{3}^{\varepsilon} \rangle_{\Omega S} + 2 \langle \partial_t F_{v}, \partial_t^2 u_{3}^{\varepsilon} \rangle_{(\partial \Omega)}, \\
& \end{align*} \]
for \(s \in (0, T] \). Here we used the following equality:
\[\langle \partial_t E_{\varepsilon}(b_{3}^{\varepsilon}), e(u_{3}^{\varepsilon}) \rangle_{\Omega S} = \langle \partial_t E_{\varepsilon}(b_{3}^{\varepsilon}(s)), e(\partial_t u_{3}^{\varepsilon}(s)) \rangle_{\Omega S} \\
- \langle \partial_t E_{\varepsilon}(b_{3}^{\varepsilon}(0)), e(\partial_t u_{3}^{\varepsilon}(0)) \rangle_{\Omega S} \\
- \langle \partial_t^2 E_{\varepsilon}(b_{3}^{\varepsilon}), e(u_{3}^{\varepsilon}) \rangle_{\Omega S} + \partial_t E_{\varepsilon}(b_{3}^{\varepsilon}) \partial_t u_{3}^{\varepsilon} + \partial_t u_{3}^{\varepsilon} \rangle_{\Omega S} + 2 \langle \partial_t F_{v}, \partial_t^2 u_{3}^{\varepsilon} \rangle_{(\partial \Omega)}. \]
Assumptions A5 on the initial conditions together with the microscopic equations in (7) ensure that

\[\| \partial_t^2 u^\varepsilon(0) \|_{L^2(\Omega^\varepsilon)}^2 + \| \partial_t p^\varepsilon(0) \|_{L^2(\Omega^\varepsilon)}^2 + \| \partial^2_u u^\varepsilon(0) \|_{L^2(\Omega^\varepsilon)}^2 \leq C, \]

where the constant C is independent of \(\varepsilon \). To justify (24), first we consider the Galerkin approximations of \(u^\varepsilon \) and \(\partial_t u^\varepsilon \) and a function \(\phi^k \) in the corresponding finite dimensional subspace, with \(\phi^k = 0 \) on \(\partial \Omega \) and \(\text{div} \phi^k = 0 \) in \(\Omega^\varepsilon_f \),

\[
\langle \rho_e \partial_t^2 u^\varepsilon_{e,k} \phi^k \rangle_{\Omega^\varepsilon_f} + \langle \mathbf{E}^\varepsilon(b_{e,3}) \mathbf{e}(u^\varepsilon_{e,k}), \mathbf{e}(\phi^k) \rangle_{\Omega^\varepsilon_f} + \langle \nabla p^\varepsilon_{e,k} \phi^k \rangle_{\Omega^\varepsilon_f} \\
+ \langle \rho_f \partial_t^2 u^\varepsilon_{f,k} \phi^k \rangle_{\Omega^\varepsilon_f} + \varepsilon^2 \mu \langle \mathbf{e}(\partial_t u^\varepsilon_{f,k}), \mathbf{e}(\phi^k) \rangle_{\Omega_f^\varepsilon} + \langle p^\varepsilon_{e,k} \phi^k \cdot n \rangle_{\Gamma^\varepsilon} = 0.
\]

Taking \(t \to 0 \) and using the regularity of \(u^\varepsilon_{e,k}, \partial_t u^\varepsilon_{f,k}, \) and \(b_{e,3} \) with respect to the time variable, we obtain

\[
\langle \rho_e \partial_t^2 u^\varepsilon_{e,k}(0) \phi^k \rangle_{\Omega^\varepsilon_f} + \langle \mathbf{E}^\varepsilon(b_{e,3}) \mathbf{e}(u^\varepsilon_{e,k}(0)), \mathbf{e}(\phi^k) \rangle_{\Omega^\varepsilon_f} + \langle \nabla p^\varepsilon_{e,k}(0) \phi^k \rangle_{\Omega^\varepsilon_f} \\
+ \langle \rho_f \partial_t^2 u^\varepsilon_{f,k}(0) \phi^k \rangle_{\Omega_f^\varepsilon} + \varepsilon^2 \mu \langle \mathbf{e}(\partial_t u^\varepsilon_{f,k}(0)), \mathbf{e}(\phi^k) \rangle_{\Omega_f^\varepsilon} + \langle p^\varepsilon_{e,k}(0) \phi^k \cdot n \rangle_{\Gamma^\varepsilon} = 0.
\]

Then the integration by parts in the last two terms and the assumptions on the initial values ensure

\[
|\langle \partial_t^2 u^\varepsilon_{e,k}(0) \phi^k \rangle_{\Omega^\varepsilon_f} + |\langle \partial_t u^\varepsilon_{e,k}(0) \phi^k \rangle_{\Omega^\varepsilon_f}| \leq |\langle f_u, \phi^k \rangle_{\Omega^\varepsilon_f} + |\langle \nabla p^\varepsilon_{e,k}, \phi^k \rangle_{\Omega^\varepsilon_f}|
\]

\[
+ \varepsilon^2 \mu |\langle \text{div} \mathbf{e}(\partial_t u^\varepsilon_{f0,k}), \phi^k \rangle_{\Omega_f^\varepsilon} + \varepsilon^2 \mu \| \nabla^2 \partial_t u^\varepsilon_{f0,k} \|_{L^2(\Omega)} \| \phi^k \|_{L^2(\Omega^\varepsilon_f)} \leq C \| \phi^k \|_{L^2(\Omega)},
\]

and hence

\[
\| \partial_t^2 u^\varepsilon_{e,k}(0) \|_{L^2(\Omega^\varepsilon_f)} + \| \partial_t^2 u^\varepsilon_{f,k}(0) \|_{L^2(\Omega^\varepsilon_f)} \leq C,
\]

where the constant C is independent of \(k \) and \(\text{div} \partial_t^2 u^\varepsilon_{e,k}(0) = 0 \) in \(\Omega^\varepsilon_f \). In a similar way, we also obtain the boundedness of \(\| \partial_t P^\varepsilon_{e,k}(0) \|_{L^2(\Omega^\varepsilon_f)} \) uniformly in \(k \).

Then the estimates similar to (23) for the Galerkin approximations of \(u^\varepsilon, p^\varepsilon, \) and \(\partial_t u^\varepsilon \) imply that \(p^\varepsilon_c \in C([0,T]; L^2(\Omega^\varepsilon_f)), \nabla p^\varepsilon, \partial_t u^\varepsilon \in C([0,T]; L^2(\Omega^\varepsilon_f))^3, \mathbf{e}(u^\varepsilon) \in C([0,T]; L^2(\Omega^\varepsilon_f)^3 \times 3^3, \partial_t u^\varepsilon \in C([0,T]; L^2(\Omega^\varepsilon_f))^3 \times 3^3, \mathbf{e}(\partial_t u^\varepsilon) \in C([0,T]; L^2(\Omega^\varepsilon_f)^3 \times 3^3).

Then from the equations for \(u^\varepsilon \) and \(p^\varepsilon \) and the continuity of \(\mathbf{e}(u^\varepsilon), \partial_t u^\varepsilon, \) and \(\nabla p^\varepsilon \) with respect to the time variable, we obtain the continuity of \(\partial_t^2 u^\varepsilon \) and \(\partial_t p^\varepsilon \) with respect to the time variable. Then the assumptions on \(u^\varepsilon_{e0}, u^\varepsilon_{f0}, \) and \(p^\varepsilon_c \) ensure the boundedness of \(\| \partial_t^2 u^\varepsilon(0) \|_{L^2(\Omega^\varepsilon_f)} \) and \(\| \partial_t p^\varepsilon(0) \|_{L^2(\Omega^\varepsilon_f)} \) uniformly in \(\varepsilon \).

For \(\phi \in H^1_0(\Omega) \), with \(\text{div} \phi = 0 \) in \(\Omega^\varepsilon_f \), we have

\[
\langle \rho_e \partial_t^2 u^\varepsilon_{e}, \phi \rangle_{\Omega^\varepsilon_f} + \langle \mathbf{E}^\varepsilon(b_{e,3}) \mathbf{e}(u^\varepsilon_{e}), \mathbf{e}(\phi) \rangle_{\Omega^\varepsilon_f} + \langle \nabla p^\varepsilon_{e}, \phi \rangle_{\Omega^\varepsilon_f} \\
+ \langle \rho_f \partial_t^2 u^\varepsilon_{f}, \phi \rangle_{\Omega_f^\varepsilon} + \varepsilon^2 \mu \langle \mathbf{e}(\partial_t u^\varepsilon_{f}), \mathbf{e}(\phi) \rangle_{\Omega_f^\varepsilon} + \langle p^\varepsilon_{e} \phi \cdot n \rangle_{\Gamma^\varepsilon} = 0.
\]

Considering the continuity of \(\mathbf{e}(u^\varepsilon), \partial_t^2 u^\varepsilon, \nabla p^\varepsilon, \) and \(\partial_t u^\varepsilon \) with respect to the time variable and taking \(t \to 0 \), we obtain the continuity of \(\partial_t^2 u^\varepsilon_{e,f} \) and

\[
\langle \rho_e \partial_t^2 u^\varepsilon_{e0}, \phi \rangle_{\Omega^\varepsilon_f} + \langle \mathbf{E}^\varepsilon(b_{e,3}) \mathbf{e}(u^\varepsilon_{e0}), \mathbf{e}(\phi) \rangle_{\Omega^\varepsilon_f} + \langle \nabla p^\varepsilon_{e0}, \phi \rangle_{\Omega^\varepsilon_f} \\
+ \langle \rho_f \partial_t^2 u^\varepsilon_{f0}, \phi \rangle_{\Omega_f^\varepsilon} + \varepsilon^2 \mu \langle \mathbf{e}(u^\varepsilon_{f0}), \mathbf{e}(\phi) \rangle_{\Omega_f^\varepsilon} + \langle p^\varepsilon_{e0} \phi \cdot n \rangle_{\Gamma^\varepsilon} = 0.
\]
The integration by parts, the boundary conditions for \(u_\varepsilon^0 \), and the assumptions on \(\phi \) imply
\[
\langle \rho_f \partial_t^2 u_\varepsilon^f(0), \phi \rangle_{\Omega_f} = - \langle \rho_c \partial_t^2 u_\varepsilon^c(0), \phi \rangle_{\Omega_c} + \langle \text{div}(\nabla e(\varepsilon_0, u_\varepsilon^c)), \phi \rangle_{\Omega_c} - \langle \nabla p_\varepsilon^c, \phi \rangle_{\Omega_c} - (\varepsilon^2 \mu \text{div}(\nabla e(u_\varepsilon^f(0))), \phi \rangle_{\Omega_f} - \varepsilon^2 \langle \mu n \cdot e(u_\varepsilon^f(0)), \phi \rangle_{\Gamma_f}.
\]

From the assumptions on \(u_\varepsilon^c \) and \(p_\varepsilon^c \) we have that \(\text{div}(\nabla e(\varepsilon_0, u_\varepsilon^c)) = f_u \), with \(f_u \in L^2(\Omega) \), and \(\|\nabla p_\varepsilon^c\|_{L^2(\Omega)} \leq C_1 \), where \(C_1 \) is independent of \(\varepsilon \). The assumptions on \(u_\varepsilon^f(0) \) ensure that \(\varepsilon^2 \mu \|\text{div}(\nabla e(u_\varepsilon^f(0)))\|_{L^2(\Omega^f)} \leq C_2 \) and there exists \(\psi \in H^1(\Omega^f) \), such that \(\|\nabla \psi\|_{L^2(\Omega^f)} \leq C_3 \) and
\[
\|\varepsilon^2 (\mu n \cdot e(u_\varepsilon^f(0)), \phi \rangle_{\Gamma_f}) = \|\langle \nabla \psi, \phi \rangle\|_{L^2(\Omega_f)}
\]
where the constants \(C_2 \), \(C_3 \), and \(C_4 \) are independent of \(\varepsilon \). Using the density of \(\phi \) in \(H = \{v \in L^2(\Omega^f) : \text{div } v = 0 \text{ on } \Omega^f\} \), we obtain the boundedness of \(\partial_t^2 u_\varepsilon^f(0) \) in \(H \) uniformly in \(\varepsilon \).

Then considering assumptions A1–A2 and applying the Hölder and Gronwall inequalities in (23), we obtain the estimates for \(\partial_t^2 u_\varepsilon^f \), \(\partial_t p_\varepsilon^c \), and \(\partial_t^2 u_\varepsilon^f \) stated in (15). Here we used the fact that assumptions A1 on \(E \) imply the following upper bound:
\[
\|\partial_t^2 E(\varepsilon_{\varepsilon,3})\|_{L^\infty((0,T) \times \Omega^f)} \leq C.
\]

Testing the first and third equations in (7) with \(\phi \in L^2(0,T; H^1(\Omega))^3 \) and using the a priori estimates for \(u_\varepsilon^c \), \(p_\varepsilon^c \), and \(\partial_t u_\varepsilon^f \), we obtain
\[
\langle \rho_f \partial_t u_\varepsilon^f, \phi \rangle_{\Omega_f} + \langle \rho_c \partial_t u_\varepsilon^c, \phi \rangle_{\Omega_c} + \langle \text{div}(\nabla e(\varepsilon_0, u_\varepsilon^c)), \phi \rangle_{\Omega_c} + \langle \nabla p_\varepsilon^c, \phi \rangle_{\Omega_c} \leq C\|\phi\|_{L^2(0,T; H^1(\Omega))^3}.
\]

Here we used the properties of an extension of \(p_\varepsilon^c \) from \(\Omega^c \) to \(\Omega \) (see Lemma 3.1) and the trace estimate \(\|p_\varepsilon^c\|_{L^2((0,T) \times \partial \Omega)} \leq C_1 \|p_\varepsilon^c\|_{L^2(0,T; H^1(\Omega))^3} \leq C_2 \|p_\varepsilon^c\|_{L^2(0,T; H^1(\Omega))^3} \)

For any \(q \in L^2(\Omega_f) \), there exists \(\phi \in L^2(0,T; H^1(\Omega))^3 \) satisfying \(\text{div } \phi = q \) in \(\Omega \), \(\phi \cdot n = \frac{1}{|\Omega_f|} \int_{\Omega_f} q(\cdot, x)dx \) on \(\partial \Omega \), and \(\|\phi\|_{L^2(0,T; H^1(\Omega))^3} \leq C\|q\|_{L^2(\Omega_f)} \). Thus for
\[
\vec{p} = \begin{cases}
\vec{p}_f & \text{in } (0,T) \times \Omega^f, \\
\vec{p}_c & \text{in } (0,T) \times (\Omega \setminus \Omega^f)
\end{cases}
\]
using (25) we obtain
\[
\langle \vec{p}, q \rangle_{\Omega_f} \leq C\|q\|_{L^2((0,T) \times \Omega_f)},
\]
where the constant \(C \) is independent of \(\varepsilon \). This implies, by the definition of the \(L^2 \)-norm and the estimates for \(p_\varepsilon^c \), that \(\|p_\varepsilon^c\|_{L^2((0,T) \times \Omega^f)} \leq C \).

To justify estimates (16) we take \(b_\varepsilon^c \) and \(\varepsilon^2 \) as test functions in (10) and (11), respectively. Using assumptions A3–A5, we obtain
\[
\|b_\varepsilon^c\|^2_{L^2(\Omega^c)} + \|\nabla b_\varepsilon^c\|^2_{L^2(\Omega^c)} \\
\leq \|b_\varepsilon^c(0)\|^2_{L^2(\Omega^c)} + C_1 \|e(u_\varepsilon^c)\|_{L^\infty(s,L^2(\Omega^c))} \|\varepsilon_\varepsilon^c\|_{L^2(0,T; L^2(\Omega))} \\
+ C_2 [\|\varepsilon_\varepsilon^c\|^2_{L^2(\Omega^c)} + \|b_\varepsilon^c\|^2_{L^2(\Omega^c)}] + C_3 [1 + \varepsilon \|\varepsilon_\varepsilon^c\|^2_{L^2(\Omega^c)} + \|b_\varepsilon^c\|^2_{L^2(0,T; L^2(\Omega))}]
\]
and
\[
\|\xi^e(s)\|^2_{L^2(\Omega_e^s)} + \|\xi^f(s)\|^2_{L^2(\Omega_f^s)} + \|\nabla \xi^e\|^2_{L^2(\Omega_e^s)} + \|\nabla \xi^f\|^2_{L^2(\Omega_f^s)} \\
\leq \|\xi^e(0)\|^2_{L^2(\Omega_e^s)} + \|\xi^f(0)\|^2_{L^2(\Omega_f^s)} \\
+ C_1 \|\epsilon e^{\epsilon^e}\|_{L^\infty(0,s;L^2(\Omega_e^s))} \left(\|b^e\|^2_{L^2(0,s;L^4(\Omega_e^s))} + \|c^e\|^2_{L^2(0,s;L^4(\Omega_e^s))}\right) \\
+ C_2 \|G(\partial_\nu f)\|_{L^\infty(\Omega_f^s)} \|\xi^f\|^2_{L^2(\Omega_f^s)} \\
+ C_3 \left(\|b^e\|^2_{L^2(\Omega_e^s)} + \|c^e\|^2_{L^2(\Omega_e^s)} + \|c^f\|^2_{L^2(\Omega_f^s)}\right).
\]

The Gagliardo–Nirenberg and trace inequalities, together with the extension properties of b^e and c^e (see Lemma 3.1), yield
\[
\begin{align*}
\|b^e\|^2_{L^4(\Omega_e^s)} &\leq \|b^e\|^2_{L^4(\Omega_e)} \leq \delta_1 \|\nabla b^e\|^2_{L^2(\Omega_e)} + C_{\delta_1} \|b^e\|^2_{L^2(\Omega_e)} \\
&\leq \delta_2 \|\nabla b^e\|^2_{L^2(\Omega_e)} + C_{\delta_2} \|b^e\|^2_{L^2(\Omega_e)}, \\
\|c^e\|^2_{L^4(\Omega_f^s)} &\leq \delta \left(\|\nabla c^e\|^2_{L^2(\Omega_e)} + \|\nabla c^f\|^2_{L^2(\Omega_f)}\right) \\
&\leq \delta_3 \left(\|\nabla c^e\|^2_{L^2(\Omega_e)} + \|\nabla c^f\|^2_{L^2(\Omega_f)}\right),
\end{align*}
\]
for an arbitrary $\delta > 0$, and C_δ depending on δ and independent of ϵ. Notice that since the Gagliardo–Nirenberg inequality is applied to the extension of b^e and c^e defined in Ω, the constant in the Gagliardo–Nirenberg inequality is independent of ϵ. Then applying the Gronwall inequality and using the assumptions A_3 on G yields
\[
\begin{align*}
\|b^e\|_{L^\infty(0,T;L^2(\Omega_e^s))} + \|\nabla b^e\|_{L^2((0,T)\times\Omega_e^s)} &\leq C, \\
\|c^e\|_{L^\infty(0,T;L^2(\Omega_f^s))} + \|\nabla c^e\|_{L^2((0,T)\times\Omega_f^s)} &\leq C, \quad j = e, f.
\end{align*}
\]
The uniform boundedness of b^e, i.e.,
\[
\|b^e\|_{L^\infty(0,T;L^\infty(\Omega_e^s))} \leq C,
\]
with a constant C independent of ϵ, is proved by applying the Alikakos iteration lemma [2, Lemma 3.2]. Since the derivation of estimate (28) is rather involved, we present the detailed proof of this estimate in the appendix; see Lemma 10.1. In the same lemma in the appendix we also prove the estimate
\[
\|c^e\|_{L^\infty(0,T;L^4(\Omega_e^s))} + \|c^f\|_{L^\infty(0,T;L^4(\Omega_f^s))} \leq C,
\]
where the constant C does not depend on ϵ.

To justify the last estimate (17), we integrate the equation for b^e in (6) over
functions for $A1$ where the constant C regions $[40, 47]$, we obtain the nonnegativity of all components of b and boundary terms and applying iteratively the theorem on positively invariant the nonnegativity of initial data b as the proof that K together with the H"older inequality implies the estimate for u.

Similar calculations yield the estimates for c in system (6) with external boundary conditions f. Theorem

We shall use a contraction argument to show the existence of a solution of the coupled problem (6)–(8).

Proof. We shall use a contraction argument to show the existence of a solution of the coupled system. We consider an operator K over $L^\infty(0, s; H^1(\Omega^\epsilon_3)^3) \times L^\infty(0, s; L^2(\Omega^\epsilon_3)^3)$ defined by $K(u^{\epsilon,j}_e, \partial_t u^{\epsilon,j}_f) = K(u^{\epsilon,j-1}_e, \partial_t u^{\epsilon,j-1}_f)$, where for given $u^{\epsilon,j-1}_e, \partial_t u^{\epsilon,j-1}_f$ we first define $(b^{\epsilon,j}_e, c^{\epsilon,j}_e, c^{\epsilon,j}_f)$ as a solution of system (6) with functions $(u^{\epsilon,j-1}_e, \partial_t u^{\epsilon,j-1}_f)$ in place of $(u^{\epsilon}_e, \partial_t u^{\epsilon}_f)$ and with external boundary conditions in (8), and then $(u^{\epsilon,j}_e, p^{\epsilon,j}_e, \partial_t u^{\epsilon,j}_f, p^{\epsilon,j}_f)$ are solutions of (7) with $b^{\epsilon,j}_e$ in place of b^ϵ_e.

For each $j = 2, 3, \ldots$, the proof of existence and uniqueness of $(b^{\epsilon,j}_e, c^{\epsilon,j}_e, c^{\epsilon,j}_f)$ for given $(u^{\epsilon,j-1}_e, \partial_t u^{\epsilon,j-1}_f)$ follows the same arguments (with a number of simplifications) as the proof that K is a contraction for $(u^{\epsilon,j}_e, \partial_t u^{\epsilon,j}_f)$, i.e., using the Galerkin method and fixed-point arguments. Notice that the fixed-point argument for the system for $b^{\epsilon,j}_e$ and $c^{\epsilon,j}_e$ allows us to consider the equations for $b^{\epsilon,j}_f$ and $c^{\epsilon,j}_f$ recursively. Thus using the nonnegativity of initial data b_0, c_0, ϕ and assumptions $A4$ on the reaction and boundary terms and applying iteratively the theorem on positively invariant regions [40, 47], we obtain the nonnegativity of all components of $b^{\epsilon,j}_e$ and $c^{\epsilon,j}_f$.

We choose the first iteration $(u^{\epsilon,1}_e, p^{\epsilon,1}_e, \partial_t u^{\epsilon,1}_f, p^{\epsilon,1}_f)$ to satisfy the initial and boundary conditions in (7) and (8). Then applying the Galerkin method (using the basis functions for $H^1(\Omega^\epsilon_3) \times H^1(\Omega^\epsilon_3 \setminus \Gamma^\epsilon)\setminus (0, \infty; L^2(\Omega^\epsilon_3))$) and fixed-point argument, we obtain the existence of solutions $(b^{\epsilon,2}_e, c^{\epsilon,2}_e, c^{\epsilon,2}_f)$ of system (6) with external boundary conditions in (8) and have

$$
\|b^{\epsilon,2}_e\|_{L^\infty(0, T; L^2(\Omega^\epsilon_3))} + \|\nabla b^{\epsilon,2}_e\|_{L^2(\Omega^\epsilon_3; T)} + \|b^{\epsilon,2}_f\|_{L^\infty(0, T; L^2(\Omega^\epsilon_3))} \leq C',
$$

$$
\|c^{\epsilon,2}_e\|_{L^\infty(0, T; L^2(\Omega^\epsilon_3))} + \|\nabla c^{\epsilon,2}_e\|_{L^2(\Omega^\epsilon_3; T)} + \|c^{\epsilon,2}_f\|_{L^\infty(0, T; L^2(\Omega^\epsilon_3))} \leq C', \quad l = e, f,
$$

where the constant C' depends only on $\|e(u^{\epsilon,1}_e)\|_{L^\infty(0, T; L^2(\Omega^\epsilon_3))}$ and the constants in assumptions $A1$–$A4$. The estimates (29) can be justified in the same way as those in (16).

Next we consider system (7) with $b^{\epsilon,2}_e$ in place of b^ϵ_e. To show the existence result
we use the Galerkin method with the basis functions \(\{ \phi_j, \psi_j, \eta_j \} \in \mathbb{N} \) for the space

\[
W = \{(v, p, w) \in H^1(\Omega^e_0)^3 \times H^1(\Omega^e_0) \times H^1(\Omega^f_0)^3 : \text{div } w = 0 \text{ in } \Omega^f_0, \Pi_v = \Pi_w \text{ on } \Gamma^e, \text{div}(K^e_p \nabla p) \in L^2(\Omega^e_0), \langle (v - K^e_p \nabla p - w) \cdot n, \psi \rangle_{H^{-1/2}(\Gamma^e), H^{1/2}(\Gamma^e)} = 0 \},
\]

and consider the approximate solutions in the form

\[
u^e_2, k = \sum_{j=1}^{k} q^e_j(t) \phi_j, \quad \nu^f_2 = \frac{d}{dt} q^e_j(t) \psi_j, \quad \partial_t \nu^f_2 = \sum_{j=1}^{k} \frac{d}{dt} q^e_j(t) \eta_j, \quad k \in \mathbb{N}.
\]

The linearity of equations for \((u^e_2, p^e_2, \partial_t u^f_2)\) ensures the existence of unique solutions \(q^e_j(t)\) of the corresponding linear system of second order ordinary differential equations with initial conditions \(q^e_j(0) = \alpha_j^e \) and \(\frac{dq^e_j}{dt}(0) = \beta_j^e\), where \(\alpha_j^e\) and \(\beta_j^e\) are derived from the initial conditions in (7), and hence, the existence of a unique solution \((u^e_2, p^e_2, \partial_t u^f_2)\) for \(k \in \mathbb{N}\). Then using the a priori estimates derived in the same way as in Lemma 3.2 (by considering assumptions A1, A2, and A5) and taking the limit as \(k \to \infty\), we obtain the existence of \(u^e_2 \in [H^1(0, T; H^1(\Omega^e_0)) \cap \mathcal{H}(0, T; L^2(\Omega^e_0))]^3, \quad p^e_2 \in H^1(0, T; H^1(\Omega^e_0)), \quad \partial_t u^f_2 \in H^1(0, T; H^1(\Omega^f_0)) \cap L^2(0, T; V), \quad V = \{v \in H^2(\Omega^f_1)^3 : \text{div } v = 0 \text{ in } \Omega^f_1\}, \text{satisfying (9) with } b^e_3 \text{ in place of } b^e_3,3. \quad \text{Taking } \psi \in L^2(0, T; H^1(\Omega^e_0)), \phi \in L^2(0, T; H^1(\Omega^f_0)) = 0, \quad \text{and } \eta \in L^2(0, T; V_0), \text{with } V_0 = \{v \in H_0^1(\Omega^f_1)^3 : \text{div } v = 0 \text{ in } \Omega^f_1\}, \text{as test functions in the weak formulation, we obtain the equations for } u^e_2, p^e_2 \text{ in (7) and } \langle \rho_f \partial_t^2 u^e_2 - \varepsilon^2 \mu \text{div}(e(\partial_t u^e_2)), \eta \rangle = 0 \text{ for any } \eta \in L^2(0, T; V_0). \text{Then De Rham’s theorem applied to } -\rho_f \partial_t^2 u^e_2 + \varepsilon^2 \mu \text{div}(e(\partial_t u^e_2)) \implies \text{existence of } p^e_2 \in L^2((0, T) \times \Omega^f_1) \text{ such that } -\rho_f \partial_t^2 u^e_2 + \varepsilon^2 \mu \text{div}(e(\partial_t u^e_2)) = \nabla p^e_2. \text{Using first } \psi = 0 = \phi = 0 = \eta \text{ in } L^2(0, T; H^1(\Omega^f_0))^3, \text{with } \Pi_\eta \eta = 0 \text{ on } (0, T) \times \Gamma^e \text{, as a test function in the weak formulation of the equations for } (u^e_2, p^e_2, \partial_t u^f_2) \text{ we obtain the transmission condition } -n \cdot \varepsilon^2 \mu e(\partial_t u^e_2) + p^e_2 = p^e_2 \text{ on } (0, T) \times \Gamma^e, \text{ satisfied in the distribution sense. Choosing } \psi = 0 = \phi = 0 = \eta \text{ in } L^2(0, T; H^1(\Omega^f_0))^3, \text{with } \Pi_\eta \eta = 0 \text{ on } (0, T) \times \Gamma^e \text{, as test functions and using the equations for } u^e_2, \partial_t u^e_2 \text{ and } \partial_t u^f_2 \text{ ensure } (\varepsilon^2 \mu (e(\partial_t u^e_2)) - p^e_2) \text{ on } (0, T) \times \Gamma^e \text{, then, using the equations for } u^e_2, p^e_2, \text{ and } \partial_t u^f_2 \text{ and considering } \psi = 0 = \phi = 0 = \eta \text{ in } L^2(0, T; H^1(\Omega^f_0))^3, \text{with } \Pi_\eta \eta = 0 \text{ on } (0, T) \times \Gamma^e \text{, as test functions and using the equations for } u^e_2, \partial_t u^e_2 \text{ and } \partial_t u^f_2 \text{ ensure } (\varepsilon^2 \mu (e(\partial_t u^e_2)) - p^e_2) \text{ on } (0, T) \times \Gamma^e \text{, and due to the transmission condition } (\varepsilon^2 \mu (e(\partial_t u^e_2)) - p^e_2) \text{ on } (0, T) \times \Gamma^e \text{, we actually obtain the boundary conditions on } (0, T) \times \partial \Omega. \text{ Hence we obtain that } (u^e_2, p^e_2, \partial_t u^f_2, p^f_2) \text{ is a weak solution of } (7), (8), \text{ in the distribution sense. Taking } \psi = 0 = \phi = 0 = \eta \text{ in } L^2(0, T; H^1(\Omega^f_0))^3, \text{with } \Pi_\eta \eta = 0 \text{ on } (0, T) \times \Gamma^e \text{, as test functions, we obtain the boundary conditions on } (0, T) \times \partial \Omega. \text{ Hence we obtain that } (u^e_2, p^e_2, \partial_t u^f_2, p^f_2) \text{ uniformly with respect to solutions of } (6) \text{ with boundary con-}
satisfy the following equations:

\[\delta \]

for \((\gamma)\) with (30) and (31) instead of \((u_{e,j}^{\varepsilon}, \partial_{u}^{\varepsilon,j})\) and \((b_{e,j}^{\varepsilon}, \partial_{u}^{\varepsilon,j})\), and that the estimates similar to (29) and (30) are fulfilled for \((b_{e,j}^{\varepsilon}, c_{e,j}^{\varepsilon}, c_{f,j}^{\varepsilon})\) and \((u_{e,j}^{\varepsilon}, p_{e,j}^{\varepsilon}, \partial_{t}^{\varepsilon,j}, p_{j}^{\varepsilon})\), with \(j \geq 2\).

To show the contraction property of \(K\), we consider two iterations

\[\delta \]

Then the differences \(b_{e,j}^{\varepsilon} = b_{e,j}^{\varepsilon-1} - b_{e,j}^{\varepsilon}, \quad \bar{c}_{e,j}^{\varepsilon} = c_{e,j}^{\varepsilon-1} - c_{e,j}^{\varepsilon}, \quad \text{and} \quad \bar{c}_{f,j}^{\varepsilon} = c_{f,j}^{\varepsilon-1} - c_{f,j}^{\varepsilon} \]

satisfy the following equations:

\[\delta \]

for \((\gamma)\) with (30) and (31) instead of \((u_{e,j}^{\varepsilon}, \partial_{u}^{\varepsilon,j})\) and \((b_{e,j}^{\varepsilon}, \partial_{u}^{\varepsilon,j})\), and that the estimates similar to (29) and (30) are fulfilled for \((b_{e,j}^{\varepsilon}, c_{e,j}^{\varepsilon}, c_{f,j}^{\varepsilon})\) and \((u_{e,j}^{\varepsilon}, p_{e,j}^{\varepsilon}, \partial_{t}^{\varepsilon,j}, p_{j}^{\varepsilon})\), with \(j \geq 2\).

To show the contraction property of \(K\), we consider two iterations

\[\delta \]

Then the differences \(b_{e,j}^{\varepsilon} = b_{e,j}^{\varepsilon-1} - b_{e,j}^{\varepsilon}, \quad \bar{c}_{e,j}^{\varepsilon} = c_{e,j}^{\varepsilon-1} - c_{e,j}^{\varepsilon}, \quad \text{and} \quad \bar{c}_{f,j}^{\varepsilon} = c_{f,j}^{\varepsilon-1} - c_{f,j}^{\varepsilon} \]

satisfy the following equations:

\[\delta \]

for \((\gamma)\) with (30) and (31) instead of \((u_{e,j}^{\varepsilon}, \partial_{u}^{\varepsilon,j})\) and \((b_{e,j}^{\varepsilon}, \partial_{u}^{\varepsilon,j})\), and that the estimates similar to (29) and (30) are fulfilled for \((b_{e,j}^{\varepsilon}, c_{e,j}^{\varepsilon}, c_{f,j}^{\varepsilon})\) and \((u_{e,j}^{\varepsilon}, p_{e,j}^{\varepsilon}, \partial_{t}^{\varepsilon,j}, p_{j}^{\varepsilon})\), with \(j \geq 2\).

To show the contraction property of \(K\), we consider two iterations

\[\delta \]

Then the differences \(b_{e,j}^{\varepsilon} = b_{e,j}^{\varepsilon-1} - b_{e,j}^{\varepsilon}, \quad \bar{c}_{e,j}^{\varepsilon} = c_{e,j}^{\varepsilon-1} - c_{e,j}^{\varepsilon}, \quad \text{and} \quad \bar{c}_{f,j}^{\varepsilon} = c_{f,j}^{\varepsilon-1} - c_{f,j}^{\varepsilon} \]

satisfy the following equations:

\[\delta \]

for \((\gamma)\) with (30) and (31) instead of \((u_{e,j}^{\varepsilon}, \partial_{u}^{\varepsilon,j})\) and \((b_{e,j}^{\varepsilon}, \partial_{u}^{\varepsilon,j})\), and that the estimates similar to (29) and (30) are fulfilled for \((b_{e,j}^{\varepsilon}, c_{e,j}^{\varepsilon}, c_{f,j}^{\varepsilon})\) and \((u_{e,j}^{\varepsilon}, p_{e,j}^{\varepsilon}, \partial_{t}^{\varepsilon,j}, p_{j}^{\varepsilon})\), with \(j \geq 2\).

To show the contraction property of \(K\), we consider two iterations

\[\delta \]
\[\partial_t \left\| \overline{c}^e_{i,j} \right\|_{L^2(\Omega^e)} + \left\| \nabla c^e_{i,j} \right\|_{L^2(\Omega^e)} + \partial_t \left\| \overline{c}^j_{e,i} \right\|_{L^2(\Omega^j)} + \left\| \nabla c^j_{e,i} \right\|_{L^2(\Omega^j)} \leq C_1 \left(\left\| \overline{c}^j_{e,i} \right\|_{L^\infty(\Omega^j)} + 1 \right) \left(\left\| \overline{c}^j_{e,i} \right\|_{L^2(\Omega^j)} + \left\| e(\overline{c}^j_{e,i} - 1) \right\|_{L^2(\Omega^j)} \right) \]
\[+ C_2 \left(\left\| e(u_{e,j}^e)^{-2} - u_{e,j}^e \right\|_{L^2(\Omega^e)} + \left\| c^e_{i,j} - 1 \right\|_{L^2(\Omega^e)} \right) \left(\left\| \overline{c}^j_{e,i} \right\|_{L^4(\Omega^j)} + \left\| \overline{b}^j_{e,i} \right\|_{L^2(\Omega^j)} \right) \]
\[+ C_3 \left(\left\| e(\overline{u}^{\epsilon,j}_{e,i}) \right\|_{L^2(\Omega^e)} \left\| c^e_{i,j} - 1 \right\|_{L^2(\Omega^e)} + \left\| \nabla \left(\partial_t (\overline{u}^{\epsilon,j}_{e,i}) \right) \right\|_{L^2(\Omega^e)} \right) + C_4 \left\| \overline{c}^j_{e,i} \right\|_{L^2(\Omega^j)} \]
\[+ C_5 \left(\left\| c^j_{e,i} - 1 \right\|_{L^2(\Omega^j)} \left\| \partial_t \overline{u}^{\epsilon,j}_{e,i} \right\|_{L^2(\Omega^e)} + \left\| \mathcal{G}(\partial_t (\overline{u}^{\epsilon,j}_{e,i})) \right\|_{L^2(\Omega^j)} \right) \]
\]
where \(\overline{u}^{\epsilon,j}_{e,i} = u_{e,j}^e - 1 - u_{e,j}^e \) and \(\overline{u}^{\epsilon,j}_{e,i} = u_{e,j}^e - 1 - u_{e,j}^e \). Using the trace and the Gagliardo-Nirenberg inequalities, we estimate \(\left\| \overline{c}^j_{e,i} \right\|_{L^2(\Omega^j)} \), \(\left\| c^e_{i,j} - 1 \right\|_{L^2(\Omega^e)} \), and \(\left\| \overline{c}^j_{e,i} \right\|_{L^2(\Omega^j)} \), as well as the boundary terms \(\varepsilon \left\| \bar{b}^j_{e,i} \right\|_{L^2(\partial \Omega^j)} \), \(\left\| \bar{b}^j_{e,i} \right\|_{L^2(\partial \Omega^j)} \), and \(\left\| \overline{c}^j_{e,i} \right\|_{L^2(\partial \Omega^j)} \), in the same way as in (26). The estimates for \(c^e_{i,j} - 1 \) in \(L^\infty(0,T; L^4(\Omega^e)) \) and for \(c^j_{e,i} - 1 \) in \(L^\infty(0,T; L^4(\Omega^j)) \) ensure
\[\int_0^T \left[\left\| e(\overline{u}^{\epsilon,j}_{e,i}) \right\|_{L^2(\Omega^e)} \left\| c^e_{i,j} - 1 \right\|_{L^2(\Omega^e)} \left\| c^j_{e,i} - 1 \right\|_{L^2(\Omega^j)} \left\| \partial_t \overline{u}^{\epsilon,j}_{e,i} \right\|_{L^2(\Omega^j)} \right] dt \leq \left\| c^e_{i,j} - 1 \right\|_{L^\infty(0,T; L^4(\Omega^e))} \left[C_1 \left\| e(\overline{u}^{\epsilon,j}_{e,i}) \right\|_{L^2(\Omega^e)} \left\| c^e_{i,j} - 1 \right\|_{L^2(\Omega^e)} \left\| \partial_t \overline{u}^{\epsilon,j}_{e,i} \right\|_{L^2(\Omega^j)} \right] \]
\[+ \left\| c^j_{e,i} - 1 \right\|_{L^\infty(0,T; L^4(\Omega^j))} \left[C_3 \left\| \partial_t \overline{u}^{\epsilon,j}_{e,i} \right\|_{L^2(\Omega^j)} \right] + \delta \left\| e(\partial_t \overline{u}^{\epsilon,j}_{e,i}) \right\|_{L^2(\Omega^j)} \]
\]
for any \(\delta > 0 \). Then combining (33) and (34) and applying the Gronwall inequality, we obtain
\[\left\| \bar{b}^j_{e,i} \right\|_{L^\infty(0,T; L^2(\Omega^e))} + \left\| \nabla \bar{b}^j_{e,i} \right\|_{L^2(\Omega^e)} + \left\| \overline{c}^j_{e,i} \right\|_{L^\infty(0,T; L^2(\Omega^e))} \]
\[+ \left\| c^j_{e,i} - 1 \right\|_{L^\infty(0,T; L^2(\Omega^j))} \]
\[\leq C_1 \left[\left\| e(\overline{u}^{\epsilon,j}_{e,i}) \right\|_{L^2(\Omega^e)} \right] + C_3 \left[\left\| \partial_t \overline{u}^{\epsilon,j}_{e,i} \right\|_{L^2(\Omega^j)} \right] + \delta \left[\left\| e(\partial_t \overline{u}^{\epsilon,j}_{e,i}) \right\| \right] \]
\]
Notice that \(C_1 = C_2 = \frac{C_{\delta}}{s} \leq C_2 = \frac{C_{\delta}}{s} \leq C_4 = \frac{C_{\delta}}{s} \), \(C_1 = C_2 = \frac{C_{\delta}}{s} \leq C_4 = \frac{C_{\delta}}{s} \leq C_4 = \frac{C_{\delta}}{s} \), and we can consider \(C_1 \) and \(C_3 \) to be independent of \(s \).

Considering \(\left\| \bar{b}^j_{e,i} \right\|_{L^2(\Omega^j)} \), with \(p = 2^k \), \(k = 2, 3, \ldots \), as a test function in the weak formulation of (31) and (32), applying the Gagliardo-Nirenberg inequality to \(\bar{b}^j_{e,i} \), and using the iteration in \(p = 2^k \) with \(k \in \mathbb{N} \) (see [2, Lemma 3.2]), we derive the estimate
\[\left\| \bar{b}^j_{e,i} \right\|_{L^\infty(0,T; L^2(\Omega^e))} \leq C_1 \left[\left\| e(\overline{u}^{\epsilon,j}_{e,i}) \right\|_{L^2(\Omega^e)} \right] + C_3 \left[\left\| \partial_t \overline{u}^{\epsilon,j}_{e,i} \right\|_{L^2(\Omega^j)} \right] \]
\[+ \delta \left[\left\| e(\partial_t \overline{u}^{\epsilon,j}_{e,i}) \right\| \right] \]
\]
for \(s \in (0,T) \), an arbitrary \(0 < \delta < 1 \), and any \(0 < \sigma < 1/9 \). For more details see the proof of Lemma 10.2 in the appendix. Notice that \(C_1 \) and \(C_3 \) depend on \(T \) and are independent of \(s \).

Now consider the equations for \((\overline{u}^{\epsilon,j}_{e,i}, \bar{p}^j_{e,i}, \partial_t \overline{u}^{\epsilon,j}_{e,i}) \), and using \((\partial_t \overline{u}^{\epsilon,j}_{e,i}, \bar{p}^j_{e,i}, \partial_t \overline{u}^{\epsilon,j}_{e,i}) \) as test functions in the integral formulation of these equations, we arrive at the following
inequality:
\[
\frac{1}{2} \rho_e \partial_t \| \partial_t \tilde{u}_j \|_{L^2(\Omega^e)}^2 + \frac{1}{2} \partial_t \langle \mathbf{E}^e (b_{e,3}^{j-1}) \mathbf{e}(\tilde{u}_j), \mathbf{e}(\tilde{u}_j) \rangle_{\Omega^e} + \frac{1}{2} \rho_e \partial_t \| \nabla \tilde{u}_j \|_{L^2(\Omega^e)}^2 + \| \nabla \tilde{p}_{j,e} \|_{L^2(\Omega^e)}^2
\]
\[
+ \frac{1}{2} \rho_f \partial_t \| \partial_t \tilde{v}_j \|_{L^2(\Omega^f)}^2 + \| \nabla \tilde{p}_{j,f} \|_{L^2(\Omega^f)}^2
\]
\[
\leq \langle \partial_t \mathbf{E}^e (b_{e,3}^{j-1}) \mathbf{e}(\tilde{u}_j), \mathbf{e}(\tilde{u}_j) \rangle_{\Omega^e} + \langle \mathbf{E}^e (b_{e,3}^{j-1}) - \mathbf{E}^e (b_{e,3}^{j-1}), \partial_t \mathbf{e}(\tilde{u}_j) \rangle_{\Omega^e}
\]
\[
\leq C_1 \| \mathbf{E}^e (b_{e,3}^{j-1}) \|_{L^\infty(0,s;L^2(\Omega^e))} + \| \nabla \tilde{u}_j \|_{L^2(\Omega^e)}^2 + C_1 \| \nabla \tilde{p}_{j,e} \|_{L^2(\Omega^e)}^2
\]
\[
\leq C_2 \| \mathbf{E}^e (b_{e,3}^{j-1}) \|_{L^\infty(0,s;L^2(\Omega^e))} + C_2 \| \nabla \tilde{u}_j \|_{L^2(\Omega^e)}^2 + C_3 \| \nabla \tilde{p}_{j,e} \|_{L^2(\Omega^e)}^2
\]
\[
(36)
\]

Thus using a priori estimates for u_j^e, $\partial_t u_j^e$, $\partial_t u_j^f$, $b_{e,j}$, and $\tilde{b}_{e,j}$, we have that
\[
\| \mathbf{e}(\tilde{u}_j^e) \|_{L^\infty(0,s;L^2(\Omega^e))} + \| \partial_t \tilde{u}_j^e \|_{L^\infty(0,s;L^2(\Omega^f))} + \| \partial_t \mathbf{e}(\tilde{u}_j^e) \|_{L^2(\Omega^e)}
\]
\[
+ \| \tilde{p}_{j,e} \|_{L^\infty(0,s;L^2(\Omega^e))} + \| \nabla \tilde{p}_{j,e} \|_{L^2(\Omega^e)}^2 \leq C_1 \| \tilde{b}_{e,j}^e \|_{L^\infty(0,s;L^2(\Omega^e))}
\]
\[
\leq C_2 \| \tilde{u}_j^e \|_{L^\infty(0,s;L^2(\Omega^e))} + C_2 \| \partial_t \tilde{u}_j^e \|_{L^2(\Omega^e)}^2 + C_3 \| \partial_t \tilde{p}_{j,e} \|_{L^2(\Omega^e)}^2
\]
\[
\]
and for fluid velocity and pressure we have

\begin{equation}
\partial_t u^\varepsilon_f \to \partial_t u_f, \quad p_f^\varepsilon \to p_f \quad \text{weakly two-scale},
\end{equation}

\begin{equation}
\varepsilon \nabla \partial_t u^\varepsilon_f \to \nabla_y \partial_t u_f \quad \text{weakly two-scale}.
\end{equation}

Additionally, we have weak two-scale convergence \(\partial_t u^\varepsilon_c \to \partial_t u_c \) and \(\partial_t u^\varepsilon_f \to \partial_t u_f \) on \(\Gamma^*_T \).

\textbf{Proof.} Applying standard extension arguments (see, e.g., \cite{1, 16} or Lemma 3.1) and using the same notation for the original and extended sequences, from estimates (15) in Lemma 3.2 we obtain a priori estimates, uniform in \(\varepsilon \), for \(u^\varepsilon_c, \nabla u^\varepsilon_c, \partial_t u^\varepsilon_c, \partial^2 \varepsilon u^\varepsilon_c \), and \(\nabla \partial_t u^\varepsilon_c \), as well as \(p^\varepsilon_c, \nabla p^\varepsilon_c \), and \(\partial_t p^\varepsilon_c \) in \(L^2(\Omega_T) \). Then the convergence results for \(u^\varepsilon_c \) and \(p^\varepsilon_c \) follow directly from the compactness of the embedding of \(H^1(0, T; \mathbb{R}^n) \to L^2(0, T; H^1(\Omega)) \) in \(L^2(\Omega^*) \), the a priori estimates (15), and the compactness theorems for the two-scale convergence; see, e.g., \cite{3, 31}. The a priori estimates (15) and the compactness theorems for the two-scale convergence ensure the convergence results for \(\partial_t u^\varepsilon_f \) and \(p^\varepsilon_f \). Using the trace inequality and a scaling argument together with a priori estimates (15), we obtain

\begin{equation}
\varepsilon \| \partial_t u^\varepsilon_c \|_{L^2(\Omega^*_T)}^2 \leq C(\| \partial_t u^\varepsilon_c \|_{L^2(\Omega^*_T)}) \leq C,
\end{equation}

\begin{equation}
\varepsilon \| \partial_t u^\varepsilon_f \|_{L^2(\Omega^*_T)}^2 \leq C(\| \partial_t u^\varepsilon_f \|_{L^2(\Omega^*_T)}) \leq C,
\end{equation}

where the constant \(C \) is independent of \(\varepsilon \). Then the compactness theorem for the two-scale convergence on oscillating surfaces \cite{4, 30} ensures the weak two-scale convergence of \(\partial_t u^\varepsilon_c \) and \(\partial_t u^\varepsilon_f \) on \(\Gamma^*_T \).

In what follows we shall use the same notation for \(b^\varepsilon_c, c^\varepsilon_c \) and their extensions to \(\Omega \), whereas the extension of \(c^\varepsilon \) from \(\Omega^*_T \) to \(\Omega \) will be denoted by \(\varepsilon^\varepsilon \). Then for \(b^\varepsilon_c \) and \(c^\varepsilon \) we have the following convergence results.

\textbf{Lemma 4.2.} There exist functions

\[b^\varepsilon_c, c^\varepsilon_c \in L^2(0, T; \mathbb{R}^n), \quad b^\varepsilon_c \in \mathbb{R}, \quad c^\varepsilon_c \in \mathbb{R}, \]

such that, up to a subsequence,

\begin{equation}
\begin{aligned}
&b^\varepsilon_c \to b_c, \quad c^\varepsilon_c \to c, \quad \varepsilon^\varepsilon \to c \quad \text{strongly in } L^2(\Omega_T),
&\nabla b^\varepsilon_c \to \nabla b_c + \nabla_y b^1_c \quad \text{weakly two-scale,}
&\nabla c^\varepsilon \to \nabla c + \nabla_y c^1 \quad \text{weakly two-scale.}
\end{aligned}
\end{equation}

\textbf{Proof.} Using estimates (16) and the extensions of \(b^\varepsilon_c, c^\varepsilon_c, \) and \(c^\varepsilon \), defined in Lemma 3.1, we obtain

\begin{equation}
\begin{aligned}
&\| b^\varepsilon_c \|_{L^2(\Omega_T)} + \| \nabla b^\varepsilon_c \|_{L^2(\Omega_T)} + \| c^\varepsilon_c \|_{L^2(\Omega_T)} + \| \nabla c^\varepsilon \|_{L^2(\Omega_T)} \leq C, \\
&\| \varepsilon^\varepsilon \|_{L^2(\Omega_T)} + \| \nabla \varepsilon^\varepsilon \|_{L^2(\Omega_T)} \leq C,
\end{aligned}
\end{equation}

where the constant \(C \) is independent of \(\varepsilon \). The estimates (40), the compactness of the embedding of \(H^1(\Omega) \) in \(L^2(\Omega) \), along with the estimate (17) and the Kolmogorov compactness theorem \cite{29} yield the strong convergence of \(b^\varepsilon_c \to b_c, \quad c^\varepsilon_c \to c_c, \) and \(\varepsilon^\varepsilon \to c \) in \(L^2(\Omega_T) \). Since \(\Omega^*_T \cap \Omega^*_T \neq \emptyset \) and \(c^\varepsilon_c(t, x) = \varepsilon^\varepsilon(t, x) \) in \(\Omega^*_T \cap \Omega^*_T \), along with the fact that \(c_c \) and \(c \) are independent of the microscopic variables \(y \), we obtain that \(c_c(t, x) = c(t, x) \) in \(\Omega_T \).

From the estimates for \(c^\varepsilon \), applying the compactness theorem for the two-scale convergence, we obtain that there exists \(c^1 \in L^2(\Omega_T; H^1_{per}(Y \setminus \Gamma)/\mathbb{R}) \) such that \(\nabla c^\varepsilon \to \nabla c + \nabla_y c^1 \) weakly two-scale \cite{54}. \(\square \)
5. Derivation of macroscopic equations for the flow velocity and elastic deformations. This section focuses on homogenization of the microscopic problem (7)–(8). First we define the effective tensors E^{hom}, K_p^{hom}, and K_u.

The macroscopic elasticity tensor $E^{\text{hom}} = (E_{ijkl}^{\text{hom}})$, permeability tensor $K_p^{\text{hom}} = (K_{p,ij}^{\text{hom}})$, and $K_u = (K_{u,ij})$ are defined by

$$E_{ijkl}^{\text{hom}}(b_{e,3}) = \frac{1}{|Y|} \int_{Y_e} \left(E_{ijkl}(y, b_{e,3}) + E_{ij}(y, b_{e,3})e_p(w^{kl}) \right) dy,$$

$$K_{p,ij}^{\text{hom}}(x) = \frac{1}{|Y|} \int_{Y_e} \left(K_{p,ij}(x, y) + K_{p,i}(x, y)\nabla_y w_{ij}^3 \right) dy,$$

$$K_{u,ij}(x) = \frac{1}{|Y|} \int_{Y_e} \left(\delta_{ij} - K_{p,i}(x, y)\nabla_y w_{ij}^3 \right) dy,$$

where $w^{kl} = w^{kl}(b_{e,3}, \cdot)$, for $k, l = 1, 2, 3$, are Y-periodic solutions of the unit cell problems

$$\text{div}_y \left(E(y, b_{e,3})(e_p(w^{kl}) + b_{kl}) \right) = 0 \quad \text{in } Y_e,$$

$$E(y, b_{e,3})(e_p(w^{kl}) + b_{kl}) n = 0 \quad \text{on } \Gamma,$$

$$\int_{Y_e} w^{kl} dy = 0,$$

functions $w^k_p = w^k_p(x, \cdot)$, for $k = 1, 2, 3$, are Y-periodic solutions of the unit cell problems

$$\text{div}_y \left(K_p(x, y)(\nabla_y w^k_p + e_k) \right) = 0 \quad \text{in } Y_e,$$

$$K_p(x, y)(\nabla_y w^k_p + e_k) \cdot n = 0 \quad \text{on } \Gamma,$$

$$\int_{Y_e} w^k_p dy = 0,$$

and $w^k_e = w^k_e(x, \cdot)$, for $k = 1, 2, 3$, are Y-periodic solutions of the unit cell problems

$$\text{div}_y \left(K_p(x, y)\nabla_y w^k_e - e_k \right) = 0 \quad \text{in } Y_e,$$

$$K_p(x, y)\nabla_y w^k_e - e_k \cdot n = 0 \quad \text{on } \Gamma,$$

$$\int_{Y_e} w^k_e dy = 0.$$

Here $b_{kl} = e_k \otimes e_l$ and $\{e_j\}_{j=1}^3$ is the canonical basis of \mathbb{R}^3.

Lemma 5.1. Periodic cell problems (42)–(44) are well-posed and have a unique solution. The tensors E^{hom} and K_p^{hom} are positive definite. Moreover, E^{hom} possesses the symmetries declared in $\textbf{A1}$.

Sketch of proof. Assumptions $\textbf{A1}$ on E and the Korn inequality for periodic functions ensure the existence of a unique solution of the unit cell problems (42) for a given $b_{e,3} \in L^2(\Omega_T)$; see, e.g., [33]. Assumptions $\textbf{A2}$ on K_p yield the existence of unique solutions of the unit cell problems (43) and (44). The positive definiteness of E and K_p, the definition of E^{hom} and K_p^{hom}, and the fact that w^{kl} and w^k_p, for $k, l = 1, 2, 3$, are solutions of (42) and (43) ensure in the standard way (see [7]) that E^{hom} and K_p^{hom} are positive definite. The definition of E^{hom} implies that E^{hom} satisfies the same symmetry assumptions in $\textbf{A1}$ as E.

© 2017 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license
Applying the method of the two-scale convergence and using the convergence results in Lemmas 4.1 and 4.2, we derive the homogenized equations for displacement, gradient, pressure, and flow velocity for a given \(\{ b_\varepsilon \} \) such that \(b_\varepsilon \to b_e \) strongly in \(L^2 (\Omega_T)^3 \) as \(\varepsilon \to 0 \). It should be emphasized that we have not yet derived the equation for the limit function \(b_e \). We only use the strong convergence of \(\{ b_\varepsilon \} \).

In the formations of the macroscopic problem for \((u_e, p_e, \partial_t u_f)\) we shall use the function \(Q(x, \partial_t u_f) \) defined as

\[
Q(x, \partial_t u_f) = \frac{1}{|Y|} \left(\int_{Y_f} \partial_t u_f \, dy - \int_{Y_e} K_p(x, y) \nabla_y q(x, y, \partial_t u_f) \, dy \right),
\]

where for \((t, x) \in \Omega_T\) the function \(q \) is a \(Y \)-periodic solution of the problem

\[
div_y(K_p(x, y) \nabla_y q) = 0 \quad \text{in } Y_e, \\
-K_p(x, y) \nabla_y q \cdot n = \partial_t u_f \cdot n \quad \text{on } \Gamma, \\
\int_{Y_e} q(x, y, \partial_t u_f) \, dy = 0.
\]

Theorem 5.2. A sequence of solutions \(\{ u_\varepsilon, p_\varepsilon, \partial_t u_f^\varepsilon, p_f^\varepsilon \} \) of microscopic problem (7) and (8) converges as \(\varepsilon \to 0 \), to a solution \((u_e, p_e, \partial_t u_f, \pi_f)\) of the macroscopic equations

\[
\partial_e \rho_e \partial_t^2 u_e - \text{div}(\mathbf{E}^{\text{hom}}(b_e, \varepsilon) \mathbf{e}(u_e)) + \nabla p_e + \partial_f \rho_f \int_{Y_f} \partial_t^2 u_f \, dy = 0 \quad \text{in } \Omega_T, \\
\partial_e \rho_e \partial_t p_e - \text{div}(K_p^{\text{hom}} \nabla \rho_e - K_u \partial_t u_e - Q(x, \partial_t u_f)) = 0 \quad \text{in } \Omega_T,
\]

with boundary and initial conditions

\[
\mathbf{E}^{\text{hom}}(b_e, \varepsilon) \mathbf{e}(u_e) \cdot n = F_u \quad \text{on } (\partial \Omega)_T, \\
(K_p^{\text{hom}} \nabla \rho_e - K_u \partial_t u_e) \cdot n = F_p + Q(x, \partial_t u_f) \cdot n \quad \text{on } (\partial \Omega)_T, \\
u_e(0) = u_{e0}, \quad \partial_t u_e(0) = u_{10}, \quad p_e(0) = p_{e0} \quad \text{in } \Omega,
\]

and the two-scale problem for the fluid flow velocity and pressure

\[
\rho_f \partial_t^2 u_f - \text{div}_y(\mu \mathbf{e}_y(\partial_t u_f) - \pi_f I) + \nabla p_e = 0, \quad \text{div}_y \partial_t u_f = 0 \quad \text{in } \Omega_T \times Y_f, \\
\Pi_e \partial_t u_f = \Pi_f \partial_t u_e \quad \text{on } \Omega_T \times \Gamma, \\
\n \cdot (\mu \mathbf{e}_y(\partial_t u_f) - \pi_f I) n = -p_e^1 \quad \text{on } \Omega_T \times \Gamma, \\
\partial_t u_f(0) = u_{f0} \quad \text{in } \Omega \times Y_f,
\]

where \(\partial_e = |Y_e|/|Y|, \partial_f = |Y_f|/|Y|, \) and

\[
p_e^1(t, x, y) = \sum_{k=1}^3 \partial_{x_k} p_e(t, x) w_p^k(x, y) + \sum_{k=1}^3 \partial_{x_k} u_f^k(t, x) w_e^k(x, y) + q(x, y, \partial_t u_f),
\]

with \(w_p^k, w_e^k \), and \(q \) being solutions of (43), (44), and (46), respectively.

We have \(u_e \in H^1(0, T; L^2(\Omega)) \cap H^1(0, T; H^1(\Omega)), p_e \in H^1(0, T; H^1(\Omega)), \partial_t u_f \in L^2(\Omega_T; H^1(\Omega)) \cap H^1(0, T; L^2(\Omega_T \times Y_f)), \) and \(\pi_f \in L^2(\Omega_T \times Y_f) \) and the convergence in the following sense:

\[
u_e \to u_e \quad \text{in } H^1(0, T; L^2(\Omega)), \quad p_e^\varepsilon \to p_e \quad \text{in } L^2(\Omega_T), \\
\n \to \nabla u_e + \nabla_y u_e^1, \quad \nabla p_e^\varepsilon \to \nabla p_e + \nabla_y p_e^1 \quad \text{weakly two-scale}, \\
\partial_t u_f^\varepsilon \to \partial_t u_f, \quad p_f^\varepsilon \to p_f, \quad \varepsilon \nabla \partial_t u_f^\varepsilon \to \nabla_y \partial_t u_f \quad \text{weakly two-scale}.
\]
Remark. In the original microscopic problem the equations of poroelasticity and the Stokes system are coupled through the transmission conditions. The limit system shows the strong coupling in the whole domain Ω. Namely, the equations for macroscopic displacement and pressure defined in the whole domain Ω are coupled with the two-scale equations for the fluid flow defined on Ω × Y. This coupling in the limit problem can be observed through both the lower order terms in the equations and the boundary conditions.

Proof of Theorem 5.2. Considering (φ(t, x, x/ε), ψ(t, x, x/ε), η(t, x, x/ε)) with φ ∈ C∞(Ω; C∞(Y))3, ψ ∈ C∞(Ω; C∞(Y)), and η ∈ C∞(Ω; C∞(Y))3 as test functions in the weak formulation of (7), with the corresponding boundary conditions in (8), we obtain

\[
\begin{align*}
(ρ_ε \partial_ε^2 u_ε, εφ)_{Ω^ε, T} &+ \langle E(ε_{ε,3})e(u_ε), εe(φ)⟩_{Ω^ε, T} + \langle ∇ p_ε, εφ⟩_{Ω^ε, T} \\
&+ \langle ρ_ε \partial_ε^2 u_ε, εψ⟩_{Ω^ε, T} + \langle K_ε ∇ u_ε − ε(∂_ε u_ε, εφ)⟩_{Ω^ε, T} \\
&+ \langle ρ_ε \partial_ε^2 u_ε, εψ⟩_{Ω^ε, T} + ε^2 \langle e(T_ε u_ε), εφ⟩_{Ω^ε, T} − \langle p_ε, ε\text{div} η⟩_{Ω^ε, T} \\
&+ \langle ε(∂_ε u_ε, n), εψ⟩_{Γ^ε} − \langle p_ε, ε\text{div} η⟩_{Γ^ε} = \langle F_ε, εφ⟩_{Ω^ε, T} + \langle F_ε, εψ⟩_{Γ^ε, T}.
\end{align*}
\]

(51)

Letting ε → 0 and using the convergence results in Lemmas 4.1 and 4.2 yields

\[
\begin{align*}
(E(y, b_{ε,3})(e(u_ε) + e_0(u_1^ε)), e_y(φ))_{Ω^ε, Y} &+ K_ε(∇ p^ε + ∇ y p^ε) − ∂_ε u_ε, ∇ ψ⟩_{Ω^ε, Y} + (ε(∂_ε u_ε, n), ψ)_{Ω^ε, Γ} \\
&− (p_ε, \text{div}_y η)_{Ω^ε, Y} = 0.
\end{align*}
\]

(52)

Considering first

(i) φ ∈ C∞(Ω; C∞(Y))3, ψ ∈ C∞(Ω; C∞(Y)), and η ∈ C∞(Ω; C∞(Y))3

and then

(ii) φ ∈ C∞(Ω; C∞(Y))3, ψ ∈ C∞(Ω; C∞(Y)), and η ∈ C∞(Ω; C∞(Y))3 with Π_εφ = Π_εη and η · n = 0 on Ω × Γ, we obtain

\[
\begin{align*}
(p_ε, \text{div}_y η)_{Ω^ε, Y} & 0
\end{align*}
\]

(53)

and the equations for correctors

\[
\begin{align*}
\text{div}_y (E(y, b_{ε,3})(e(u_ε) + e_0(u_1^ε))) & 0 \text{ in } Ω^ε \times Y, \\
E(y, b_{ε,3})(e(u_ε) + e_0(u_1^ε)) & 0 \text{ on } Ω^ε \times Γ.
\end{align*}
\]

(54)

and

\[
\begin{align*}
\text{div}_y (K_ε(∇ p^ε + ∇ y p^ε) − ∂_ε u_ε) & 0 \text{ in } Ω^ε \times Y, \\
(-K_ε(∇ p^ε + ∇ y p^ε) + ∂_ε u_ε) · n & (ε(∂_ε u_ε, n), ψ)_{Ω^ε, Γ} \text{ on } Ω^ε \times Γ.
\end{align*}
\]

(55)

Considering η ∈ C∞(Ω; C∞(Y))3 with Π_εφ = Π_εη on Ω × Γ, from (52) and (53) it follows that

\[
p_ε = p_ε(t, x) \text{ in } Ω^ε \times Y \text{ and } p_ε = p_ε \text{ on } Ω^ε \times Γ.
\]

Thus we have p_ε = p_ε in Ω. Taking (φ(t, x), ψ(t, x), η(t, x, x/ε)), where

- φ ∈ C∞(Ω × Γ)^3 and ψ ∈ C∞(Ω × Γ),
- η ∈ C∞(Ω; C∞(Y))^3 with Π_εη = Π_εφ on Ω × Γ and div_η(t, x, y) = 0 in Ω × Γ,

(56)

© 2017 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license
as test functions in the weak formulation of (7), with external boundary conditions in (8), yields

\[
\begin{align*}
\langle \rho \partial^2_t u^\varepsilon, \phi \rangle_{\Omega_T} &+ \langle \mathbf{E}^\varepsilon (b^\varepsilon, \omega) \mathbf{e}(u^\varepsilon), \mathbf{e}(\phi) \rangle_{\Omega_T} + \langle \nabla p^\varepsilon, \phi \rangle_{\Omega_T} \\
&+ \langle \rho_p \partial_t p^\varepsilon, \psi \rangle_{\Omega_T} + \langle K_p \nabla p^\varepsilon - \partial_t u^\varepsilon, \nabla \psi \rangle_{\Omega_T} \\
&+ \langle p_f \partial^2_t u_f^\varepsilon, \eta \rangle_{\Omega_T} - \mu \varepsilon^2 (\mathbf{e}(\partial_t u_f^\varepsilon), \mathbf{e}(\eta)) + \varepsilon^{-1} \mathbf{e}_y(\eta) \rangle_{\Omega_T} - \langle p_f^\varepsilon, \text{div}_x \eta \rangle_{\Omega_T} \\
&+ \langle \partial_t u^\varepsilon_f \cdot n, \psi \rangle_{\Gamma_T} - \langle p^\varepsilon, \eta \cdot n \rangle_{\Gamma_T} = \langle F_u, \phi \rangle_{(\partial \Omega)_T} + \langle F_p, \psi \rangle_{(\partial \Omega)_T}.
\end{align*}
\]

(56)

Letting \(\varepsilon \to 0 \) and using the two-scale convergence of \(u^\varepsilon, p^\varepsilon, \) and \(\partial_t u^\varepsilon_f \), we obtain

\[
\begin{align*}
\langle \rho_p \partial^2_t u_c, \phi \rangle_{\Omega_T} &+ \langle \mathbf{E} (y, b_1, \lambda) \mathbf{e}(u_c), \mathbf{e}(\phi) \rangle_{\Omega_T} \\
&+ \langle \nabla p_c, \phi \rangle_{\Omega_T} + \langle K_p \nabla p_c - \partial_t u_c, \nabla \phi \rangle_{\Omega_T} \\
&+ \langle \rho_p \partial_t p_c, \psi \rangle_{\Omega_T} + \langle K_p \nabla p_c + \nabla y, \partial_t u_c, \nabla \phi \rangle_{\Omega_T} \\
&+ \langle \rho_f \partial^2_t u_f^\varepsilon, \eta \rangle_{\Omega_T} - \mu (\mathbf{e}_y, \mathbf{e}_y(\eta))_{\Omega_T} - \langle \nabla p_c, \eta \rangle_{\Omega_T} \\
&- \langle \varepsilon^1, \eta \rangle_{\Omega_T} = |\bar{Y}| \langle F_u, \phi \rangle_{(\partial \Omega)_T} + |\bar{Y}| \langle F_p, \psi \rangle_{(\partial \Omega)_T}.
\end{align*}
\]

(57)

Here we used the relation \(p_c = p_f \) a.e. in \(\Omega_T \), as well as the fact that due to the relation \(\partial_t u^\varepsilon_f = 0 \) and the two-scale convergence of \(\partial_t u^\varepsilon_f \), we have

\[
\lim_{\varepsilon \to 0} \langle \partial_t u^\varepsilon_f \cdot n, \psi \rangle_{\Gamma_T} = \lim_{\varepsilon \to 0} \left(-\langle \text{div} \partial_t u^\varepsilon_f, \psi \rangle_{\Omega_T} - \langle \partial_t u^\varepsilon_f, \nabla \psi \rangle_{\Omega_T} \right) \\
= -\lim_{\varepsilon \to 0} \langle \partial_t u^\varepsilon_f, \nabla \psi \rangle_{\Omega_T} = -|\bar{Y}|^{-1} \langle \partial_t u_f, \nabla \psi \rangle_{\Omega_T}.
\]

(58)

To show the convergence of \(\langle p^\varepsilon, \eta \cdot n \rangle_{\Gamma_T} \) we use \(\text{div}_y \eta = 0 \) and the fact that \(p^1_c \) is well defined on \(\Gamma' \):

\[
\lim_{\varepsilon \to 0} \langle p^\varepsilon, \eta \cdot n \rangle_{\Gamma_T} = \lim_{\varepsilon \to 0} \left(-\langle \nabla p^\varepsilon, \eta \rangle_{\Omega_T} \right) \\
= -|\bar{Y}|^{-1} \langle \nabla p_c + \nabla y, \eta \rangle_{\Omega_T} - |\bar{Y}|^{-1} \langle p_c, \text{div}_y \eta \rangle_{\Omega_T} \\
= |\bar{Y}|^{-1} \langle \langle p^1_c, \eta \cdot n \rangle_{\Omega_T} - \langle \nabla p_c + \nabla y, \eta \rangle_{\Omega_T} \rangle_{\Gamma_T}.
\]

(59)

Notice that \(n \) is the internal for \(\eta \) normal at the boundary \(\Gamma' \).

Also, for an arbitrary test function \(\eta \in C^\infty_0(\Omega_T; C^\infty_0(\eta) \right) \), from the two-scale convergence of \(\partial_t u^\varepsilon_f \) and the fact that \(\partial_t u^\varepsilon_f \) is divergence-free, it follows that

\[
0 = \lim_{\varepsilon \to 0} \langle \text{div} \partial_t u^\varepsilon_f, \varepsilon \eta \rangle_{\Omega_T} - \lim_{\varepsilon \to 0} \langle \partial_t u^\varepsilon_f, \varepsilon \nabla \eta \rangle_{\Omega_T} \\
= -|\bar{Y}|^{-1} \langle \partial_t u_f, \varepsilon \nabla \eta \rangle_{\Omega_T}.
\]

Thus \(\text{div}_y \partial_t u_f = 0 \) in \(\Omega_T \times Y_f \).

Considering \(\phi \equiv 0 \) and \(\psi \equiv 0 \), and taking first \(\eta \in C^\infty_0(\Omega_T; C^\infty_0(\eta) \right)^3 \) with \(\text{div}_y \eta = 0 \) and then \(\eta \in C^\infty_0(\Omega_T; C^\infty_0(\eta) \right)^3 \) with \(\Pi \eta = 0 \) on \(\Omega_T \times \Gamma \), we obtain the two-scale problem (49) for \(\partial_t u_f \). From the boundary conditions \(\Pi \partial_t u^\varepsilon_f = \Pi \partial_t u^\varepsilon_f \) on \(\Gamma_T' \) and the two-scale convergence of \(\partial_t u^\varepsilon_f \) and \(\partial_t u^\varepsilon_f \) on \(\Gamma_T' \) (see Lemma 4.1), we obtain

\[
\frac{1}{|\bar{Y}|} \int_{\Omega_T} \int_{\Gamma} \Pi \partial_t u_c(t, x) \psi(t, x, y) d\gamma_y dx dt = \lim_{\varepsilon \to 0} \varepsilon \int_{\Gamma_T'} \Pi \partial_t u^\varepsilon_f(t, x) \psi(t, x, x \varepsilon) d\gamma dt \\
= \lim_{\varepsilon \to 0} \varepsilon \int_{\Gamma_T'} \Pi \partial_t u^\varepsilon_f(t, x) \psi(t, x, x \varepsilon) d\gamma dt \\
= \frac{1}{|\bar{Y}|} \int_{\Omega_T} \int_{\Gamma} \Pi \partial_t u_f(t, x, y) \psi(t, x, y) d\gamma_y dx dt
\]
for all $\psi \in C_0(\Omega_T; C_{per}(Y))$. Thus $\Pi_\tau \partial_t u_e = \Pi_\tau \partial_t u_f$ on $\Omega_T \times \Gamma$.

Considering first $\phi \in C_0^\infty(\Omega_T)^3$, $\psi \in C_0^\infty(\Omega_T)$, and then $\phi \in C^\infty(\Omega_T)^3$, $\psi \in C^\infty(\Omega_T)$, together with $\eta \in C_0^\infty(\Omega_T; C_{per}(Y_f))^3$ and $\Pi_\tau \eta = \Pi_\tau \phi$ on Γ, and using the equations (49) for $\partial_t u_f$, we obtain the limit equations for u_e and p_e:

$$
\begin{align*}
\partial_e \rho_e \partial_t^2 u_e - \text{div}(E^{\text{hom}}(b_{e,3}) e(u_e)) + \partial_e \nabla p_e + \frac{1}{|Y|} \int_{Y_e} \nabla p^1_e dy = 0 & \text{ in } \Omega_T, \\
- \frac{1}{|Y|} \langle \mu \Pi_\tau(e(\partial_t u_f) n), 1 \rangle_{H^{-1/2},H^{1/2}(\Gamma)} = 0 & \text{ in } \Omega_T, \\
E^{\text{hom}}(b_{e,3}) e(u_e) n = F_u & \text{ on } (\partial\Omega)_T,
\end{align*}
$$

(60)

where $\partial_e = |Y_e|/|Y|$ and the effective elasticity tensor E^{hom} is defined by (41), and

$$
\begin{align*}
\partial_e \rho_e \partial_t p_e & - \frac{1}{|Y|} \text{div} \left[\int_{Y_e} [K_p(\nabla p_e + \nabla p^1_e) - \partial_t u_e] dy - \int_{Y_f} \partial_t u_f dy \right] = 0 & \text{ in } \Omega_T, \\
\frac{1}{|Y|} \left[\int_{Y_e} [K_p(\nabla p_e + \nabla p^1_e) - \partial_t u_e] dy - \int_{Y_f} \partial_t u_f dy \right] \cdot \eta = F_p & \text{ on } (\partial\Omega)_T,
\end{align*}
$$

(61)

with p^1_e defined by the two-scale problem (55). Considering the weak formulation of (49) with the test function $\eta = 1$ yields

$$
\begin{align*}
\rho_f \int_{Y_f} \partial^2_t u_f dy + |Y_f| \nabla p_e = - \langle \mu (e_p(\partial_t u_f) - \pi f I) n, 1 \rangle_{H^{-1/2},H^{1/2}(\Gamma)} = \int_{Y_f} p^1_e n d\gamma_y, \\
- \langle \mu \Pi_\tau(e_y(\partial_t u_f) n), 1 \rangle_{H^{-1/2},H^{1/2}(\Gamma)}.
\end{align*}
$$

Using the Y-periodicity of p^1_e, we obtain

$$
-(\mu \Pi_\tau(e_y(\partial_t u_f) n), 1)_{H^{-1/2},H^{1/2}(\Gamma)} = \rho_f \int_{Y_f} \partial^2_t u_f dy + |Y_f| \nabla p_e - \int_{Y_e} \nabla p^1_e dy.
$$

Thus we can rewrite the equation for u_e as

$$
\begin{align*}
\partial_e \rho_e \partial_t^2 u_e - \text{div}(E^{\text{hom}}(b_{e,3}) e(u_e)) + \nabla p_e + \partial_e \rho_f \int_{Y_f} \partial^2_t u_f dy = 0 & \text{ in } \Omega_T, \\
\end{align*}
$$

(62)

where $\partial_f = |Y_f|/|Y|$. Considering the structure of problem (55), we represent p^1_e in the form

$$
p^1_e(t, x, y) = \sum_{k=1}^3 \sum_{\alpha=1}^3 \partial_{x_\alpha} p_e(t, x) w^\alpha_k(t, x, y) + \sum_{k=1}^3 \partial_t u^k_e(t, x, y) + q(x, y, \partial_t u_f),
$$

(63)

where w^k_e and u^k_e are solutions of unit cell problems (43) and (44), and q is a solution of the two-scale problem (46). Incorporating the expression (63) for p^1_e into (61) and considering (62), we obtain that p_e and u_e satisfy the macroscopic problem (47)–(48), where E^{hom}, K_p^{hom}, and K_u are defined by (41). The coupling with the flow velocity $\partial_t u_f$ is reflected in the interaction function Q, defined by (45). Notice that since $\operatorname{div} \partial_t u_f = 0$ in Y_f, we have that $\int_{Y_f} \partial_t u_f \cdot n d\gamma = 0$ and the problem (46) is well-posed, i.e., the compatibility condition is satisfied. □
6. Strong two-scale convergence of $e(u^e_\varepsilon)$, ∇p^e_ε, and $\partial_t u^f_\varepsilon$.

Lemma 6.1. For a subsequence of solutions of microscopic problem (7)–(8), $\{u^e_\varepsilon\}$, $\{p^e_\varepsilon\}$, and $\{\partial_t u^f_\varepsilon\}$ (denoted again by $\{u^e_\varepsilon\}$, $\{p^e_\varepsilon\}$, and $\{\partial_t u^f_\varepsilon\}$), and the limit functions u_e, u^e_y, p_e, p^e_y, and $\partial_t u_f$ as in Lemma 4.1, we have

\[
\begin{align*}
\nabla u^e_\varepsilon &\rightarrow \nabla u_e + \nabla_y u^1_e & \text{strongly two-scale}, \\
\nabla p^e_\varepsilon &\rightarrow \nabla p_e + \nabla_y p^1_e & \text{strongly two-scale}, \\
\partial_t u^f_\varepsilon &\rightarrow \partial_t u_f & \text{strongly two-scale}, \\
\varepsilon e(\partial_t u^f_\varepsilon) &\rightarrow e_y(\partial_t u_f) & \text{strongly two-scale}.
\end{align*}
\]

Proof. To show the strong two-scale convergence, we prove the convergence of the energy functional related to (7) for u^e_ε, p^e_ε, and $\partial_t u^f_\varepsilon$. Because of the dependence of E on the temporal variable, we have to consider a modified form of the energy functional. We consider a monotone decreasing function $\zeta : \mathbb{R}_+ \rightarrow \mathbb{R}_+$, e.g., $\zeta(t) = e^{-\gamma t}$ for $t \in \mathbb{R}_+$, and define the energy functional for the microscopic problem (7)–(8) as

\[
E^\varepsilon(u^e_\varepsilon, p^e_\varepsilon, \partial_t u^f_\varepsilon) = \frac{1}{2}\rho_e\|\partial_t u^e_\varepsilon(s)\zeta(s)\|^2_{L^2(\Omega_e)} - \langle \zeta', \rho_e |\partial_t u^e_\varepsilon|^2 \rangle_{\Omega^e_x} + \frac{1}{2}\langle E^\varepsilon(b^e_{\varepsilon,3}) e(u^e_\varepsilon(s)) \zeta(s), e(u^e_\varepsilon(s)) \zeta(s) \rangle_{\Omega^e_x}
\]

\[
- \frac{1}{2} \left([2\zeta' \zeta E^\varepsilon(b^e_{\varepsilon,3}) + \zeta^2 \partial_t E^\varepsilon(b^e_{\varepsilon,3})] e(u^e_\varepsilon), e(u^e_\varepsilon) \right)_{\Omega^e_x}
\]

\[
+ \frac{1}{2} \rho_p \|p^e_\varepsilon(s)\zeta(s)\|^2_{L^2(\Omega_e)} - \langle \zeta', \rho_p |p^e_\varepsilon|^2 \rangle_{\Omega^e_p} + \langle K^e_p \nabla p^e_\varepsilon \zeta, \nabla p^e_\varepsilon \zeta \rangle_{\Omega^e_p}
\]

\[
+ \frac{1}{2} \rho_f \|\partial_t u^f_\varepsilon(s)\zeta(s)\|^2_{L^2(\Omega_f)} - \langle \zeta', \rho_f |\partial_t u^f_\varepsilon|^2 \rangle_{\Omega^f_x} + \mu \|\zeta e(\partial_t u^f_\varepsilon)\|^2_{L^2(\Omega^f_x)}
\]

for $s \in (0, T)$. Considering $\partial_t u^e_\varepsilon \zeta^2, p^e_\varepsilon \zeta^2, \partial_t u^f_\varepsilon \zeta^2$ as a test function in (9) we obtain the equality

\[
E^\varepsilon(u^e_\varepsilon, p^e_\varepsilon, \partial_t u^f_\varepsilon) = \frac{1}{2}\rho_e\|\partial_t u^e_\varepsilon(0)\|^2_{L^2(\Omega_e)}
\]

\[
+ \frac{1}{2} \langle E^\varepsilon(b^e_{\varepsilon,3}) e(u^e_\varepsilon(0)), e(u^e_\varepsilon(0)) \rangle_{\Omega^e_x} + \frac{1}{2} \rho_p \|p^e_\varepsilon(0)\|^2_{L^2(\Omega_e)}
\]

\[
+ \frac{1}{2} \rho_f \|\partial_t u^f_\varepsilon(0)\|^2_{L^2(\Omega_f)} + \langle F_u, \partial_t u^e_\varepsilon(\partial\Omega) \rangle_{\Omega^e_x} + \langle F_p, p^e_\varepsilon(\partial\Omega) \rangle_{\Omega^e_p}.
\]

Due to the assumptions on E and $\partial_t E$, there exists a positive constant γ such that

\[
(2\gamma E(y, \xi) - \partial_t E(y, \xi)) A \cdot A \geq 0 \text{ for all symmetric matrices } A,
\]

all continuous bounded functions ξ, and $y \in Y$.

Since $\{b^e_{\varepsilon}\}$ converges strongly in $L^2(\Omega_T)$, $e(u^e_\varepsilon)$ converges weakly two-scale, and $E^\varepsilon(b^e_{\varepsilon,3})$ is uniformly bounded, we have the weak two-scale convergence of the sequence $(E^\varepsilon(b^e_{\varepsilon,3}))\varepsilon e(u^e_\varepsilon)$ to $(E(y, b_{\varepsilon,3}))\varepsilon (e(u_e) + e_y(u^1_e))$ and of $(2\gamma E^\varepsilon(b^e_{\varepsilon,3}) - \partial_t E^\varepsilon(b^e_{\varepsilon,3}))\varepsilon e(u^e_\varepsilon)$ to $(2\gamma E(y, b_{\varepsilon,3}) - \partial_t E(y, b_{\varepsilon,3}))\varepsilon (e(u_e) + e_y(u^1_e))$ as $\varepsilon \rightarrow 0$. Using in (65) and (66) the lower semicontinuity of the corresponding norms, the initial conditions for u^e_ε, p^e_ε, and...
\[\partial_t u^\varepsilon_f, \text{ and the convergence of } \partial_t u^\varepsilon_c, p^\varepsilon_c, \text{ and } \partial_t u^\varepsilon_f \text{ implies} \]

\[
\rho_\varepsilon \| \partial_t u^\varepsilon_c(s) \zeta(s) \|_{L^2(\Omega \times Y_e)}^2 + 2\gamma \rho_\varepsilon \| \partial_t \zeta(s) \|_{L^2(\Omega \times Y_e)}^2 + \langle E(y, b, e, c) \zeta^2(s) (e_{u^\varepsilon(s)} + e_y(u^\varepsilon(s))), (e_{u^\varepsilon(s)} + e_y(u^\varepsilon(s))) \rangle_{\Omega \times Y_e} \\
+ \langle \zeta^2 (2\gamma E(y, b, e, c) - \partial_t E(y, b, e, c)) (e_{u^\varepsilon(s)} + e_y(u^\varepsilon(s)), e_{u^\varepsilon(s)} + e_y(u^\varepsilon(s))) \rangle_{\Omega \times Y_e} \\
+ \rho_\varepsilon \| p^\varepsilon_c(s) \zeta(s) \|_{L^2(\Omega \times Y_e)}^2 + 2\gamma \rho_\varepsilon \| p^\varepsilon_c \|_{L^2(\Omega \times Y_e)}^2 \\
+ 2\zeta^2 K_p (\nabla_{p^\varepsilon_c} + \nabla_{y^\varepsilon} p^\varepsilon_c), \nabla_{p^\varepsilon_c} + \nabla_{y^\varepsilon} p^\varepsilon_c, \Omega \times Y_e, Y_f \|_{\Omega \times Y_e} + \rho_f \| \partial_t u_f(s) \zeta(s) \|_{L^2(\Omega \times Y_f)}^2 \\
\leq 2|Y| \liminf_{\varepsilon \to 0} \mathcal{E}^\varepsilon(u^\varepsilon_c, p^\varepsilon_c, \partial_t u^\varepsilon_f) \leq 2|Y| \limsup_{\varepsilon \to 0} \mathcal{E}^\varepsilon(u^\varepsilon_c, p^\varepsilon_c, \partial_t u^\varepsilon_f) \\
= \langle E(y, b, e, c) (e_{u^\varepsilon(s)} + e_y(u^\varepsilon(s))), (e_{u^\varepsilon(s)} + e_y(u^\varepsilon(s))) \rangle_{\Omega \times Y_e} \\
+ \rho_\varepsilon \| u^\varepsilon_c \zeta^2(s) \|_{L^2(\Omega \times Y_e)}^2 + \rho_\varepsilon \| p^\varepsilon_c \|_{L^2(\Omega \times Y_e)}^2 + \rho_f \| u_f \|_{L^2(\Omega \times Y_f)}^2 \\
+ 2|Y| \langle F_u, \partial_t u^\varepsilon_c \zeta^2(s) \rangle_{\Omega \times Y_e} + 2|Y| \langle F_p, p^\varepsilon_c \zeta^2(s) \rangle_{\Omega \times Y_e} \\
\] (67)

for \(s \in (0, T) \). Here we used the weak and the weak two-scale convergences of \(\partial_t u^\varepsilon_c, e(u^\varepsilon_c), e(\partial_t u^\varepsilon_c), p^\varepsilon_c, \text{ and } \nabla p^\varepsilon_c, \text{ and the weak two-scale convergence of } \partial_t u^\varepsilon_f \text{ and } \varepsilon e(\partial_t u^\varepsilon_f). \)

Considering the limit equations (47)–(49) for \(u^\varepsilon_c, u^\varepsilon_f, \) and \(\partial_t u_f \) and taking \(\langle \partial_t u^\varepsilon_c \zeta^2, p^\varepsilon_c, \partial_t u^\varepsilon_f \zeta^2 \rangle \) as a test function yields

\[
\frac{1}{2} \rho_\varepsilon \| \partial_t u^\varepsilon_c(s) \zeta(s) \|_{L^2(\Omega \times Y_e)}^2 - \frac{1}{2} \rho_\varepsilon \| \partial_t u^\varepsilon_c(0) \|_{L^2(\Omega \times Y_e)}^2 + \gamma \rho_\varepsilon \| \partial_t \zeta(s) \|_{L^2(\Omega \times Y_e)}^2 + \langle E(y, b, e, c) \zeta^2(s), (e_{u^\varepsilon(s)} + e_y(u^\varepsilon(s))) \rangle_{\Omega \times Y_e} \\
+ \rho_\varepsilon \| u^\varepsilon_c \zeta^2(s) \|_{L^2(\Omega \times Y_e)}^2 + \rho_\varepsilon \| p^\varepsilon_c \|_{L^2(\Omega \times Y_e)}^2 + \rho_f \| u_f \|_{L^2(\Omega \times Y_f)}^2 \\
\langle K_p(x, y) (\nabla_{p^\varepsilon_c} + \nabla_{y^\varepsilon} p^\varepsilon_c) - \partial_t u^\varepsilon_c, \partial_t u^\varepsilon_c \rangle_{\Omega \times Y_e} + \frac{1}{2} \rho_f \| \partial_t u_f(s) \zeta(s) \|_{L^2(\Omega \times Y_f)}^2 \\
- \frac{1}{2} \rho_f \| \partial_t u_f(0) \|_{L^2(\Omega \times Y_f)}^2 + \gamma \rho_f \| \partial_t \zeta(s) \|_{L^2(\Omega \times Y_f)}^2 + \langle p^\varepsilon_c, \partial_t u_f \cdot n \zeta^2 \rangle_{\Omega \times Y_f} \\
+ \mu(e_y(\partial_t u_f), e_y(\partial_t u_f)) \zeta^2_{\Omega \times Y_f} = \langle Y \rangle \langle F_{u^\varepsilon}, \partial_t u^\varepsilon_c \zeta^2 \rangle_{\Omega \times Y_e} + \langle Y \rangle \langle F_p, p^\varepsilon_c \zeta^2 \rangle_{\Omega \times Y_e} \\
\] (68)

for \(s \in (0, T) \). From (55) for the corrector \(p^\varepsilon_c \) we obtain

\[
- \langle p^\varepsilon_c, \partial_t u_f \rangle_{\Omega \times Y_e} = \langle K_p(x, y) (\nabla_{p^\varepsilon_c} + \nabla_{y^\varepsilon} p^\varepsilon_c) - \partial_t u^\varepsilon_c, \nabla_{p^\varepsilon_c} + \nabla_{y^\varepsilon} p^\varepsilon_c \zeta^2 \rangle_{\Omega \times Y_e}. \\
\]

Considering (54) for the corrector \(u^\varepsilon_c \) and taking \(\partial_t u^\varepsilon_c \zeta^2 \) as a test function yields

\[
\langle E(y, b, e, c) (e_{u^\varepsilon(s)} + e_y(u^\varepsilon(s))), (e_{u^\varepsilon(s)} + e_y(u^\varepsilon(s))) \rangle_{\Omega \times Y_e} \\
= \langle E(y, b, e, c) (e_{u^\varepsilon(s)} + e_y(u^\varepsilon(s))), (e_{u^\varepsilon(s)} + e_y(u^\varepsilon(s))) \rangle_{\Omega \times Y_e} \\
= \frac{1}{2} \langle E(y, b, e, c) (e_{u^\varepsilon(s)} + e_y(u^\varepsilon(s))) \zeta^2(s), (e_{u^\varepsilon(s)} + e_y(u^\varepsilon(s))) \rangle_{\Omega \times Y_e} \\
- \frac{1}{2} \langle E(y, b, e, c) (e_{u^\varepsilon(s)} + e_y(u^\varepsilon(s))), (e_{u^\varepsilon(s)} + e_y(u^\varepsilon(s))) \rangle_{\Omega \times Y_e} \\
+ \frac{1}{2} \langle (2\gamma E(y, b, e, c) - \partial_t E(y, b, e, c)) \zeta^2(e_{u^\varepsilon(s)} + e_y(u^\varepsilon(s))), (e_{u^\varepsilon(s)} + e_y(u^\varepsilon(s))) \rangle_{\Omega \times Y_e}. \\
\]

(70)

Combining (68)–(70) with (67) and using that \(e_y(u^\varepsilon(0)) = e_y(\hat{u}_e) \) in \(\Omega \times Y_e \), we obtain

\[
\mathcal{E}(u^\varepsilon_c, p^\varepsilon_c, \partial_t u_f) \leq \liminf_{\varepsilon \to 0} \mathcal{E}^\varepsilon(u^\varepsilon_c, p^\varepsilon_c, \partial_t u^\varepsilon_f) \leq \limsup_{\varepsilon \to 0} \mathcal{E}^\varepsilon(u^\varepsilon_c, p^\varepsilon_c, \partial_t u^\varepsilon_f) = \mathcal{E}(u^\varepsilon_c, p^\varepsilon_c, \partial_t u_f) \\
\]
and thus conclude that \(\lim_{\varepsilon \to 0} \mathcal{E}^\varepsilon(u_\varepsilon^\varepsilon, p_\varepsilon^\varepsilon, \partial_t u_\varepsilon^\varepsilon) = \mathcal{E}(u_e, p_e, \partial_t u_f) \). Then the strong two-scale convergence relations stated in the lemma follow by lower semicontinuity arguments.

7. Derivation of macroscopic equations for reaction-diffusion-convection problem

The homogenized coefficients in the reaction-diffusion-convection equations, which will be obtained in the derivation of the macroscopic problem, are defined by

\[
D_{b,ij}^{\text{hom}} = \frac{1}{|Y|} \int_{Y_e} \left[D_{b}^{ij} + (D_{b} \nabla_y \omega_b^i(y)) \right] dy,
\]

\[
D_{ij}^{\text{hom}} = \int_Y \left[D^{ij}(y) + (D(y) \nabla_y \omega_j^i(y)) \right] dy,
\]

\[
v_f(t,x) = \frac{1}{|Y|} \int_{Y_f} \left[G(\partial_t u_f(t, x, y)) - D_f \nabla_y z(t, x, y) \right] dy,
\]

with \(\omega_b \) and \(\omega \) being \(Y \)-periodic solutions of the unit cell problems

\[
\text{div}(D_b(\nabla_y \omega_b^i(y) + e_j)) = 0 \quad \text{in } Y_e, \quad D_b(\nabla_y \omega_b^i(y) + e_j) \cdot n = 0 \quad \text{on } \Gamma
\]

and

\[
\text{div}_y(D(y)(\nabla_y \omega_j^i + e_j)) = 0 \quad \text{in } Y \setminus \tilde{\Gamma}, \quad D_e(\nabla_y \omega_e^i + e_j) \cdot n = 0, \quad D_f(\nabla_y \omega_f^i + e_j) \cdot n = 0 \quad \text{on } \tilde{\Gamma},
\]

where \(\omega_e^i(y) = \omega^i(y) \) for \(y \in Y_e \) and \(\omega_f^i(y) = \omega^i(y) \) for \(y \in Y_f \), and \(z \) is a \(Y \)-periodic solution of

\[
\text{div}_y(D_f \nabla_y z - G(\partial_t u_f)) = 0 \quad \text{in } Y_f, \quad (D_f \nabla_y z - G(\partial_t u_f)) \cdot n = 0 \quad \text{on } \Gamma.
\]

Here

\[
D(y) = \begin{cases}
D_e & \text{in } Y_e, \\
D_f & \text{in } Y_f.
\end{cases}
\]

Notice that the definition of \(D_{b,ij}^{\text{hom}} \) and \(D_{ij}^{\text{hom}} \) and the fact that \(D_{b}^{ij} > 0 \), with \(j = 1, 2, 3 \), \(D_e > 0 \), \(D_f > 0 \), and \(\omega_e^i, \omega_f^i \) are solutions of the unit cell problems (72) and (73) ensure that \(D_{b,ij}^{\text{hom}} \) and \(D_{ij}^{\text{hom}} \) are positive definite.

Next we derive macroscopic equations for the limit functions \(b_e \) and \(c \) defined in (39). The main difficulty in the proof is to show the convergence of the nonlinear functions depending on the displacement gradient.

Theorem 7.1. Solutions of the microscopic problem (6), (8) converge to solutions...
\(b_c, c \in L^2(0, T; H^1(\Omega))\) of the macroscopic equations
\[
\partial_t b_c - \text{div}(D_b^{\text{hom}} \nabla b_c) = \partial_t \int_{Y_b} g_b(c, b_c, W(b_{c,3}, y) \epsilon(u_c)) dy + \partial_T P(b_c) \quad \text{in } \Omega_T,
\]
\[
\partial_t c - \text{div}(D_b^{\text{hom}} \nabla c - \nu_f c)
\]
\[
\quad = \partial_f g_f(c) + \partial_t \int_{Y_b} g_c(c, b_c, W(b_{c,3}, y) \epsilon(u_c)) dy \quad \text{in } \Omega_T,
\]
\[
D_b^{\text{hom}} \nabla b_c \cdot n = F_b(b_c) \quad \text{on } (\partial \Omega)_T,
\]
\[
(D_b^{\text{hom}} \nabla c - \nu_f c) \cdot n = F_c(c) \quad \text{on } (\partial \Omega)_T,
\]
\[
b(0, x) = b_0(x), \quad c(0, x) = c_0(x) \quad \text{in } \Omega,
\]
where
\[
W(b_{c,3}, y) = \left\{ W_{klrij}(b_{c,3}, y) \right\}_{k,l,i,j=1} = \left\{ b_{ij}^{kl} + (e_y(w_{ij}^{kl}(b_{c,3}, y)))_{kl} \right\}_{k,l,i,j=1},
\]
with \(w_{ij}^{kl}\) being solutions of the unit cell problems (42), and \(b_{kl} = e_k \otimes e_l\), \(\{e_k\}_{k=1}^3\), is the canonical basis of \(\mathbb{R}^3\).

Here \(\partial_c = |Y_c|/|Y|\), \(\partial_f = |Y_f|/|Y|\), and \(\partial_T = |\Gamma|/|Y|\). We have the convergence in the following sense:
\[
b_c^\varepsilon \to b_c, \quad \epsilon_c \to c \quad \text{strongly in } L^2(\Omega_T),
\]
\[
\nabla b_c^\varepsilon \to \nabla b_c + \nabla_g b_c^1, \quad \nabla c^\varepsilon \to \nabla c + \nabla_g c^1 \quad \text{weakly two-scale.}
\]

Proof. We can rewrite the microscopic equation for \(b_c^\varepsilon\) as
\[
-\langle b_c^\varepsilon \chi_{\Omega_c^\varepsilon}, \partial_t \varphi_1 \rangle_{\Omega_T^\varepsilon} + \langle D_b^{\text{hom}} \nabla b_c^\varepsilon, \nabla \varphi_1 \chi_{\Omega_c^\varepsilon} \rangle_{\Omega_T^\varepsilon} - \langle b_{00}, \varphi_1 \chi_{\Omega_c^\varepsilon} \rangle_{\Omega_T^\varepsilon}
\]
\[
= \langle g_b(c^\varepsilon, b_c^\varepsilon, \epsilon(u_c^\varepsilon)), \varphi_1 \chi_{\Omega_c^\varepsilon} \rangle_{\Omega_T^\varepsilon} + \epsilon \langle P(b^\varepsilon), \varphi_1 \rangle_{\Gamma_T^\varepsilon} + \langle F_b(b_c^\varepsilon), \varphi_1 \rangle_{(\partial \Omega)_T^\varepsilon}
\]
with \(\varphi_1 = \phi_1(t, x) + \phi_2(t, x, x/\varepsilon)\), where \(\phi_1 \in C^\infty(\overline{\Omega})\) is such that \(\phi_1(0, T, x) = 0\) for \(x \in \mathbb{R}^3\), and \(\phi_2 \in C^\infty(\Omega; C^\infty_0(Y))\), and \(\chi_{\Omega_c^\varepsilon}\) the characteristic function of \(\Omega_c^\varepsilon\). Taking into account the strong convergence of \(b_c^\varepsilon\) and \(c^\varepsilon\) and the two-scale convergence of \(\nabla b_c^\varepsilon\) and \(\nabla c^\varepsilon\) (see Lemma 4.2) together with the strong two-scale convergence of \(\epsilon(u_c^\varepsilon)\), we obtain
\[
\lim_{\varepsilon \to 0} \|T_c^\varepsilon(\epsilon(u_c^\varepsilon)) - \epsilon(u_c) - \epsilon_y(u_c^1)\|_{L^2(\Omega_T^\varepsilon \times Y_c)} = 0,
\]
where \(T_c^\varepsilon\) is the periodic unfolding operator for the perforated domain \(\Omega_c^\varepsilon\); see, e.g., [15]. Assumptions on \(g_b\) in A4 and the a priori estimates for \(c^\varepsilon, b_c^\varepsilon,\) and \(u_c^\varepsilon\) ensure
\[
\|g_b(T_c^\varepsilon(c^\varepsilon), T_c^\varepsilon(b_c^\varepsilon), T_c^\varepsilon(\epsilon(u_c^\varepsilon))) - g_b(c, b_c, \epsilon(u_c) + \epsilon_y(u_c^1))\|_{L^1(\Omega_T^\varepsilon \times Y_c)}
\]
\[
\quad \leq C_1 \left(\|T_c^\varepsilon(c^\varepsilon) - c\|_{L^2(\Omega_T^\varepsilon \times Y_c)} + \|T_c^\varepsilon(b_c^\varepsilon) - b_c\|_{L^2(\Omega_T^\varepsilon \times Y_c)} \right)
\]
\[
\quad + \|T_c^\varepsilon(\epsilon(u_c^\varepsilon)) - \epsilon(u_c) - \epsilon_y(u_c^1)\|_{L^2(\Omega_T^\varepsilon \times Y_c)}
\]
\[
\|g_b(c^\varepsilon, b_c^\varepsilon, \epsilon(u_c^\varepsilon))\|_{L^2(\Omega_T^\varepsilon \times Y_c)} \leq C_2,
\]
where $C_1 = C_1 (\| \mathcal{T}^e (e(u^e_\varepsilon)) \|_{L^2(\Omega_\varepsilon \times Y^e_\varepsilon)}, \| e(u_\varepsilon) + e_b(\varepsilon_\varepsilon^1) \|_{L^2(\Omega_\varepsilon \times Y^e_\varepsilon)}, \| \mathcal{T}^e (b_\varepsilon^e) \|_{L^2(\Omega_\varepsilon \times Y^e_\varepsilon)}, \| \mathcal{T}^e_b (e(u^e_\varepsilon)) \|_{L^2(\Omega_\varepsilon \times Y^e_\varepsilon)}, \| b_b^e \|_{L^2(\Omega_\varepsilon)})$ and the constants C_1 and C_2 are independent of ε. Combining the estimates in (79), the definition of Ω^e_ε and the strong convergence of c^e_ε and b^e_ε in $L^2(\Omega_\varepsilon)$, we conclude that

$$\lim_{\varepsilon \to 0} \int_{\Omega^e_\varepsilon} g_b (c^e_\varepsilon, b^e_\varepsilon, e(u^e_\varepsilon)) \psi(t, x, x/\varepsilon) \, dx \, dt = \frac{1}{|Y|} \int_{\Omega_\varepsilon} \int_{Y^e_\varepsilon} g_b (c, b_e, e(u_e) + e_b(u_1^e)) \psi \, dy \, dx \, dt$$

$$+ \frac{1}{|Y|} \lim_{\varepsilon \to 0} \int_{\Omega^e_\varepsilon} \int_{Y^e_\varepsilon} \left[g_b (\mathcal{T}^e (c^e_\varepsilon), \mathcal{T}^e (b^e_\varepsilon), \mathcal{T}^e_b (e(u^e_\varepsilon))) - g_b (c, b_e, e(u_e) + e_b(u_1^e)) \right] \mathcal{T}^e_b (\psi) \, dy \, dx \, dt$$

(80)

$$= \frac{1}{|Y|} \int_{\Omega_\varepsilon} \int_{Y^e_\varepsilon} g_b (c, b_e, e(u_e) + e_b(u_1^e)) \psi \, dy \, dx \, dt$$

for all $\psi \in C_0^\infty(\Omega_\varepsilon; C_{per}(Y))$. Thus, using the estimate for $\| g_b (c^e_\varepsilon, b^e_\varepsilon, e(u^e_\varepsilon)) \|_{L^2(\Omega^e_\varepsilon)}$ in (79), we conclude that

$$g_b (c^e_\varepsilon, b^e_\varepsilon, e(u^e_\varepsilon)) \rightarrow g_b (c, b_e, e(u_e) + e_b(u_1^e)) \quad \text{two-scale}.$$

To show the convergence of the boundary integral over Γ^e_ε, we used the Lipschitz continuity of P and the trace estimate

$$\varepsilon \| b^e_\varepsilon - b_e \|^2_{L^2(\Gamma^e_\varepsilon)} \leq C_1 \left(\| b^e_\varepsilon - b_e \|^2_{L^2(\Omega^e_\varepsilon)}, \| \nabla (b^e_\varepsilon - b_e) \|^2_{L^2(\Omega^e_\varepsilon)} \right)$$

$$\leq C_2 \left(\| b^e_\varepsilon - b_e \|^2_{L^2(\Omega^e_\varepsilon)} + \varepsilon^2 \| \nabla b^e_\varepsilon \|^2_{L^2(\Omega^e_\varepsilon)} + \| \nabla b_e \|^2_{L^2(\Omega^e_\varepsilon)} \right).$$

Then due to the strong convergence of b^e_ε in $L^2(\Omega_\varepsilon)$, the regularity of b_e, i.e., $b_e \in L^2(0, T; H^1(\Omega))$, and the boundedness of ∇b^e_ε in $L^2(\Omega^e_\varepsilon)$, uniformly in ε, we obtain

$$\lim_{\varepsilon \to 0} \varepsilon \| P(b^e_\varepsilon) - P(b_e) \|^2_{L^2(\Gamma^e_\varepsilon)} \leq C \lim_{\varepsilon \to 0} \varepsilon \| b^e_\varepsilon - b_e \|^2_{L^2(\Gamma^e_\varepsilon)} = 0.$$

Taking in (78) first $\phi_1 \equiv 0$ and then $\phi_2 \equiv 0$ and considering ϕ_1 such that $\phi_1(0) = 0$, we obtain macroscopic equations for b_e in (75). The standard arguments for parabolic equations imply that $\partial_\varepsilon b_e \in L^2(0, T; H^1(\Omega))$. Combining this with the fact that $b_e \in L^2(0, T; H^1(\Omega))$ (see Lemma 4.2), we conclude that $b_e \in C([0, T]; L^2(\Omega))$. Then from (78) we obtain that b_e satisfies the initial condition.

The properties of Ω^e_ε and of the unfolding operator \mathcal{T}^e_f for the domain Ω^e_ε yield

$$\lim_{\varepsilon \to 0} \int_{\Omega^e_\varepsilon} \mathcal{G}(\partial_t u^e_\varepsilon) \psi(t, x, x/\varepsilon) \, dx \, dt = \lim_{\varepsilon \to 0} \frac{1}{|Y|} \int_{\Omega_\varepsilon} \int_{Y^e_\varepsilon} \mathcal{G}(\mathcal{T}^e_f (\partial_t u^e_\varepsilon)) \mathcal{T}^e_f (\psi) \, dy \, dx \, dt$$

$$= \frac{1}{|Y|} \int_{\Omega_\varepsilon} \int_{Y^e_\varepsilon} \mathcal{G}(\partial_t u_f) \psi \, dy \, dx \, dt$$

$$+ \frac{1}{|Y|} \lim_{\varepsilon \to 0} \int_{\Omega_\varepsilon} \int_{Y^e_\varepsilon} \left[\mathcal{G}(\mathcal{T}^e_f (\partial_t u^e_\varepsilon)) - \mathcal{G}(\partial_t u_f) \right] \mathcal{T}^e_f (\psi) \, dy \, dx \, dt$$

for all $\psi \in C_0^\infty(\Omega_\varepsilon; C_{per}(Y))$. Using the Lipschitz continuity of \mathcal{G} and the strong convergence of $\mathcal{T}^e_f (\partial_t u^e_\varepsilon)$, ensured by the strong two-scale convergence of $\partial_t u^e_\varepsilon$, we obtain

$$\lim_{\varepsilon \to 0} \int_{\Omega_\varepsilon \times Y^e_\varepsilon} \left[\mathcal{G}(\mathcal{T}^e_f (\partial_t u^e_\varepsilon)) - \mathcal{G}(\partial_t u_f) \right] \mathcal{T}^e_f (\psi) \, dy \, dx \, dt$$

$$\leq C \lim_{\varepsilon \to 0} \| \mathcal{T}^e_f (\partial_t u^e_\varepsilon) - \partial_t u_f \|_{L^2(\Omega_\varepsilon \times Y^e_\varepsilon)} \| \psi \|_{L^2(\Omega_\varepsilon \times Y^e_\varepsilon)} = 0.$$
Thus taking into account the boundedness of $\mathcal{G}(\partial_t u^\varepsilon_f)$, we conclude
\[\mathcal{G}(\partial_t u^\varepsilon_f) \rightarrow \mathcal{G}(\partial_t u_f) \quad \text{two-scale.} \]

In the same way as for g_b, the assumptions in A4 ensure that
\begin{align*}
&\|g_\varepsilon(T^\varepsilon_e(c^\varepsilon_e), T^\varepsilon_b(b^\varepsilon_b), T^\varepsilon(c^\varepsilon)) - g_\varepsilon(c, b, e(u^\varepsilon)) + e_y(u^\varepsilon_b))\|_{L^1(\Omega_T \times \Omega)} \\
&\quad \leq C \left(\|T^\varepsilon_e(c^\varepsilon_e) - c\|_{L^2(\Omega_T \times \Omega)} \\
&\quad + \|T^\varepsilon_b(b^\varepsilon_b) - b_c\|_{L^2(\Omega_T \times \Omega)} + \|T^\varepsilon(c^\varepsilon) - e(u^\varepsilon) - e_y(u^\varepsilon_b)\|_{L^2(\Omega_T \times \Omega)}\right),
\end{align*}
where $C = C(||T^\varepsilon_e(\mathbf{e}(u^\varepsilon))||_{L^2(\Omega_T \times \Omega_e)}, ||\mathbf{e}(u^\varepsilon) + e_y(u^\varepsilon_b)||_{L^2(\Omega_T \times \Omega_e)}, ||T^\varepsilon_b(c^\varepsilon_b)||_{L^2(\Omega_T \times \Omega_e)}, ||T^\varepsilon(c^\varepsilon)||_{L^2(\Omega_T \times \Omega_e)}, ||\mathbf{c}^\varepsilon||_{L^2(\Omega_T))}, ||b_c||_{L^2(\Omega_T))}$ and assumptions on g in A4 imply
\[\|g_\varepsilon(c^\varepsilon_e, b^\varepsilon_b, e(u^\varepsilon_b))\|_{L^2(\Omega^\varepsilon_e, \Omega^\varepsilon_b)} \leq C, \]
with a constant C independent of ε. Then estimate (82) and the strong convergence of c^ε_e and b^ε_b in $L^2(\Omega_T)$ and of $T^\varepsilon_e(\mathbf{e}(u^\varepsilon_b))$ in $L^2(\Omega_T \times \Omega_e)$, together with calculations similar to (80), yield
\[g_\varepsilon(c^\varepsilon_e, b^\varepsilon_b, e(u^\varepsilon_b)) \rightarrow g_e(c, b_c, e(u_e) + e_y(u^\varepsilon_b)) \quad \text{two-scale.} \]

Considering $\varphi_2(t, x) = \psi_1(t, x) + \varepsilon \psi_2(t, x, \varepsilon)$, with $\psi_1 \in C^0_\text{per}(0, T; C^\infty(\overline{\Omega}))$ and $\psi_2 \in C^\infty_0(\Omega_T; C^\infty_\text{per}(Y \setminus \overline{\Omega}))$ as a test function in (11), we obtain
\[-\langle c^\varepsilon_e \chi_{\Omega^\varepsilon_e}, \partial_t \varphi_2 \rangle_{\Omega_T} + \langle D_c \nabla c^\varepsilon_e \cdot \nabla \varphi_2 \chi_{\Omega^\varepsilon_e} \rangle_{\Omega_T} - \langle g_\varepsilon(c^\varepsilon_e, b^\varepsilon_b, e(u^\varepsilon_b)), \varphi_2 \rangle_{\Omega_T} \\
- \langle c^\varepsilon_f \chi_{\Omega^\varepsilon_f}, \partial_t \psi_1 \rangle_{\Omega_T} + \langle D_f \nabla c^\varepsilon_f - \mathcal{G}(\partial_t u^\varepsilon_f) c^\varepsilon_f, \nabla \varphi_2 \chi_{\Omega^\varepsilon_f} \rangle_{\Omega_T} - \langle g_f(c^\varepsilon_f), \varphi_2 \rangle_{\Omega_T} = \langle F_e(c^\varepsilon_e), \varphi_2 \rangle_{(\partial \Omega)^\varepsilon}. \]

The two-scale and the strong convergences of c^ε_e and c^ε_f together with strong two-scale convergence of $\mathbf{e}(u^\varepsilon_b)$ and $\partial_t u^\varepsilon_f$ ensure that
\begin{align*}
-\langle \langle Y_e c, \partial_t \psi_1 \rangle_{\Omega_T} + \langle D_e (\nabla c + \nabla_y c^1_e), \nabla \psi_1 + \nabla_y \psi_2 \rangle_{\Omega_T \times \Omega_e} \\
-\langle \langle Y_f c, \partial_t \psi_1 \rangle_{\Omega_T} + \langle D_f (\nabla c + \nabla_y c^1_f), \nabla \psi_1 + \nabla_y \psi_2 \rangle_{\Omega_T \times \Omega_f} \\
-\langle g_e(c, b_c, e(u_c) + e(u^\varepsilon_b)), \psi_1 \rangle_{\Omega_T \times \Omega_e} - \langle g_f(c), \psi_1 \rangle_{\Omega_T \times \Omega_f} = \langle Y \langle F_e(c), \psi_1 \rangle_{(\partial \Omega)^\varepsilon} \rangle \\
\end{align*}
Letting $\psi_1 = 0$ yields
\begin{align}
\langle D_e (\nabla c + \nabla_y c^1_e), \nabla_y \psi_2 \rangle_{\Omega_T \times \Omega_e} + \langle D_f (\nabla c + \nabla_y c^1_f), \nabla_y \psi_2 \rangle_{\Omega_T \times \Omega_f} \\
- \langle \mathcal{G}(\partial_t u_f)c_e, \nabla_y \psi_2 \rangle_{\Omega_T \times \Omega_f} = 0,
\end{align}
where $c^1_e(t, x, y) = c^1(t, x, y)$ for $y \in Y_i$ and $(t, x) \in \Omega_T$, with $l = e, f$. Taking into account the structure of (83), we represent c^1 in the form
\begin{align*}
c^1_e(t, x, y) &= \sum_{j=1}^3 \partial_{x_j} c(t, x) \omega_j(y) \quad \text{for } (t, x) \in \Omega_T, y \in Y_e, \\
c^1_f(t, x, y) &= \sum_{j=1}^3 \partial_{x_j} c(t, x) \omega_j(y) + c(t, x) z(t, x, y) \quad \text{for } (t, x) \in \Omega_T, y \in Y_f,
\end{align*}
where ω^j, with $j = 1, 2, 3$, and z are solutions of the unit cell problems (73) and (74), respectively. Then choosing $\psi_2 = 0$, we obtain the macroscopic equations for c in (75).

To ensure that the whole sequence of solutions of microscopic problem converges, we shall prove the uniqueness of a solution of the limit problem (47)–(49), (75). In fact we are going to prove, using the contraction arguments, that the limit problem is well-posed and in particular has a unique solution.

We consider an operator \mathcal{K} on $L^\infty(0,T;H^1(\Omega)) \times L^\infty(0,T;L^2(\Omega))$ given by $(u^j_\epsilon, \partial_t u^j_\epsilon) = \mathcal{K}(u^{j-1}_\epsilon, \partial_t u^{j-1}_\epsilon)$, where for given $(u^{j-1}_\epsilon, \partial_t u^{j-1}_\epsilon)$ we first define b^j_ϵ, c^j as a solution of (75) with $(u^j_\epsilon, \partial_t u^j_\epsilon)$ in place of $(u^j_\epsilon, \partial_t u^j_\epsilon)$ and then $(u^j_{\epsilon}, p^j_{\epsilon}, u^j_f, \pi^j_f)$ are solutions of (47)–(49) with b^j_ϵ in place of b^j_ϵ. We denote $\bar{c}^j = c^j - c^{j-1}, \bar{b}^j_\epsilon = b^j_\epsilon - b^{j-1}_\epsilon, \bar{u}^{j-1}_\epsilon = u^{j-1}_\epsilon - u^{j-2}_\epsilon, \bar{p}^{j-1}_\epsilon = p^{j-1}_\epsilon - p^{j-2}_\epsilon$, and $\bar{u}^{j-1}_f = u^{j-1}_f - u^{j-2}_f$. To prove the existence of a unique solution of problem (47)–(49), (75), we derive a contraction inequality and show that the operator \mathcal{K} has a fixed point.

First we obtain estimates for solutions of the reaction-diffusion-convection system (75).

Lemma 8.1. Any two consecutive iterations $$(u^{j-1}_\epsilon, \partial_t u^{j-1}_\epsilon), (b^j_\epsilon, c^j) \text{ and } (u^{j-2}_\epsilon, \partial_t u^{j-2}_\epsilon), (b^{j-1}_\epsilon, c^{j-1})$$ for the limit problem (47)–(49), (75) satisfy the following estimates:

$$\begin{align*}
\|b^j_\epsilon\|_{L^\infty(0,T;L^\infty(\Omega))} + \|c^j\|_{L^\infty(0,T;L^\infty(\Omega))} + \|b^{j-1}_\epsilon\|_{L^\infty(0,T;L^\infty(\Omega))} + \|c^{j-1}\|_{L^\infty(0,T;L^\infty(\Omega))} &\leq C, \\
\|b^j_\epsilon\|_{L^\infty(0,s;L^\infty(\Omega))} + \|c^j\|_{L^\infty(0,s;L^2(\Omega))} &\leq C\left[\|e^{c^{j-1}}\|_{L^{1+\frac{1}{2}}(0,s;L^2(\Omega))} + \|\partial_t u^{j-1}_f\|_{L^2(\Omega_s \times Y_f)}\right],
\end{align*}$$

with an arbitrary $s \in (0,T]$ and any $0 < \sigma < 1/9$, the constant C being independent of s.

Proof. The boundedness of b^j_ϵ and b^{j-1}_ϵ can be obtained in the same way as the corresponding estimate for b^j_ϵ in (16). To show the boundedness of c^j, we consider $(c^j - M)^+$, where $M \geq \max\{\|c_0\|_{L^\infty(\Omega_s)}, 1\}$, as a test function in the equation for c^j in (75). Using assumptions $A4$ on g_e, g_f, and F_e, we obtain

$$\begin{align*}
\|(c^j(s) - M)^+\|_{L^2(\Omega_s)}^2 + \|\nabla(c^j - M)^+\|_{L^2(\Omega_s)}^2 &\leq M\|b^j_\epsilon\|_{L^\infty(\Omega_s)} + 1\|c^j - M\|^+_{L^1(\Omega_s)} + M\|v^{j-1}_f\|_{L^\infty(\Omega_s)} + 1\|\nabla(c^j - M)^+\|_{L^1(\Omega_s)} + C\|b^j_\epsilon\|_{L^\infty(\Omega_s)} + C\|v^{j-1}_f\|_{L^\infty(\Omega_s)} + 1\|c^j - M\|^+_{L^2(\Omega_s)} + \|e^{c^{j-1}}\|_{L^\infty(0,s;L^2(\Omega_s))}\|W^j\|_{L^\infty(\Omega_s;L^2(Y_e))}\|c^j - M\|^+_{L^2(0,s;L^4(\Omega_s))} \\
&+ \|e^{c^{j-1}}\|_{L^2(\Omega_s)}^2 + M^2\int_0^s \Omega_M(t)^\sigma dt
\end{align*}$$

for $s \in (0,T)$, where $\Omega_M(t) = \{x \in \Omega : c^j(t, x) > M\}$ for $t \in (0,T)$. Here v^{j-1}_f is defined in the following way: first we replace $\partial_t u_f$ in the unit cell problem (74)
with \(\partial_t w_f^{-1} \) to obtain \(z_f^{-1} \), and then we use the third line of (71) with \(z_f^{-1} \) instead of \(z \) to obtain \(v_f^{-1} \). The definition of \(v_f^{-1} \) and of \(W_f = W(b_{e,3}^f, y) \) in (76) together with assumptions A1 and A3 on \(E \) and \(G \) ensure that \(\|v_f^{-1}\|_{L^\infty(\Omega)} \leq C \) and \(\|W_f\|_{L^\infty(\Omega; L^2(\gamma_i))} \leq C_1 \|b_{e,3}^f\|_{L^\infty(\Omega)} \leq C_2 \). Using the embedding \(H^1(\Omega) \subset L^4(\Omega) \), we obtain

\[
\|c_f^{-1} - M\|^2 \|\nabla(c_f^{-1} - M)\|^2 \|G\|_{L^5(\Omega)} \leq CM^2 \int_0^s \left[\Omega_M(t) + \|\Omega_M(t)^{1/2} \right] dt
\]

for some \(s \in (0, T] \). Then applying Theorem II.6.1 in [22] with \(q = 4(1 + \gamma) \), \(r = 5(1 + \gamma)/2 \) and iterating over time intervals yields the boundedness of \(c_f^{-1} \) in \(L^\infty(0, T; L^\infty(\Omega)) \). The same calculations ensure also the boundedness of \(c_f^{-1} \).

Considering the equations for \(\tilde{b}_e^f \) and \(\tilde{c}_f \), and using \(b_{e,3}^f \) and \(c_f^\gamma \) as test functions in these equations, we obtain

\[
\|\tilde{b}_e^f(s)\|^2_{L^2(\Omega)} + \|\tilde{\nabla}\tilde{b}_e^f\|^2_{L^2(\Omega)} \leq C_1 \|c_f^{-1}\|_{L^\infty(0, s; L^2(\Omega))} \|\hat{b}_e^f\|^2_{L^2(0, s; L^4(\Omega))} + C_2 \|\tilde{b}_e^f\|^2_{L^2(\Omega)} + \|\tilde{\nabla}\tilde{b}_e^f\|^2_{L^2(\Omega)} \tag{85}
\]

\[
\|\tilde{c}_f(s)\|^2_{L^2(\Omega)} + \|\tilde{\nabla}\tilde{c}_f\|^2_{L^2(\Omega)} \leq C_1 \left[1 + \|b_{e,3}^f\|_{L^\infty(\Omega)} \|c_f^{-1}\|_{L^\infty(\Omega)} \right] \left[\|\tilde{c}_f\|^2_{L^2(\Omega)} + \|\tilde{\nabla}\tilde{c}_f\|^2_{L^2(\Omega)} \right] + C_2 \|\tilde{\nabla}\tilde{c}_f\|^2_{L^2(\Omega)} + \|\tilde{\nabla}\tilde{\nabla}\tilde{c}_f\|^2_{L^2(\Omega)} \tag{86}
\]

for \(s \in (0, T] \). Here we used assumptions A4 on the nonlinear functions \(g_b, g_e, g_f, P, F_b, \) and \(F_c \). From the definition of \(v_f^{-1} \) and \(W_f^{-1} \), the Lipschitz continuity of \(G \) and assumptions on \(E \), it follows that

\[
\|\tilde{c}_f^{-1}\|^2_{L^2(\Omega)} \leq C \|\partial_t \tilde{u}_f^{-1}\|^2_{L^2(\Omega \times \gamma_i)}, \quad \|\tilde{\nabla}\tilde{W}_f\|^2_{L^2(0, s; L^4(\Omega; L^2(\gamma_i)))} \leq C \|\tilde{b}_e^f\|^2_{L^2(0, s; L^4(\Omega))}.
\]

Adding the inequalities (85) and (86), considering the compactness of embedding \(H^1(\Omega) \subset L^4(\Omega) \), and using the Hölder and Gronwall inequalities yields

\[
\|\tilde{b}_e^f\|^2_{L^\infty(0, s; L^2(\Omega))} + \|\tilde{\nabla}\tilde{b}_e^f\|^2_{L^2(\Omega)} + \|\tilde{c}_f^{-1}\|^2_{L^\infty(0, s; L^2(\Omega))} + \|\tilde{\nabla}\tilde{c}_f\|^2_{L^2(\Omega)} \leq C \left[\|\tilde{u}_e^f\|^2_{L^2(\Omega; L^2(\gamma_i))} + \|\partial_t \tilde{u}_f^{-1}\|^2_{L^2(\Omega \times \gamma_i)} \right]. \tag{87}
\]
To derive the estimate for the L^∞-norm of \tilde{b}^j_k we use $(\tilde{b}^j_k)^{p-1}$ as a test function in (75):
\[
\frac{1}{p} \| \tilde{b}^j_k(s) \|_{L^p(\Omega)}^p + \frac{4(p-1)}{p^2} \| \nabla \tilde{b}^j_k \|_{L^2(\Omega)}^2 + \frac{p-1}{p} \| \tilde{b}^j_k \|_{L^2(\Omega)}^2
\leq C_1 \left[\| c \|_{L^\infty(0,s)} \right] + C_2 \| \tilde{b}^j_k \|_{L^p(\Omega)}^p + C_3 \| \tilde{W}^j \|_{L^\infty(\Omega)}^\delta \left[\| \tilde{b}^j_k \|_{L^2(\Omega)}^2 \right] + C_4 \| \tilde{W}^j \|_{L^\infty(\Omega)}^\gamma \left[\| \tilde{b}^j_k \|_{L^2(\Omega)}^2 \right] + C_5 \| \tilde{W}^j \|_{L^\infty(\Omega)}^\beta \left[\| \tilde{b}^j_k \|_{L^2(\Omega)}^2 \right]
\]
for $s \in (0,T]$. Using the Gagliardo–Nirenberg inequality
\[
\| w \|_{L^\infty(\Omega)} \leq C \| \nabla w \|_{L^2(\Omega)} \| w \|_{L^1(\Omega)}^{1-\alpha/10},
\]
with $\alpha = 9/10$, and making calculations similar to those in (118) in the appendix, we obtain the following estimate:
\[
\| \tilde{b}^j_k \|_{L^\infty(\Omega)} \leq C^2 \| \tilde{b}^j_k \|_{L^2(\Omega)}^2 + C \left[\| \tilde{W}^j \|_{L^\infty(\Omega)}^\gamma \left[\| \tilde{b}^j_k \|_{L^2(\Omega)}^2 \right] \right] + C \left[\| \tilde{W}^j \|_{L^\infty(\Omega)}^\beta \left[\| \tilde{b}^j_k \|_{L^2(\Omega)}^2 \right] \right],
\]
where $\beta = \frac{\alpha}{10}, \quad 0 < \sigma < 1/9$, and $\delta > 0$ can be chosen arbitrarily. The definition of \tilde{W}^j implies
\[
\| \tilde{b}^j_k \|_{L^\infty(\Omega)} \leq \left[\tilde{W}^j \right]_{(0,s,L^\infty(\Omega))} \left[\| \tilde{b}^j_k \|_{L^2(\Omega)}^2 \right] \leq C \| \tilde{W}^j \|_{L^\infty(\Omega)}^\gamma \left[\| \tilde{b}^j_k \|_{L^2(\Omega)}^2 \right] \leq C \| \tilde{W}^j \|_{L^\infty(\Omega)}^\beta \left[\| \tilde{b}^j_k \|_{L^2(\Omega)}^2 \right],
\]
for $s \in (0,T]$ and any $0 < \sigma < 1/9$.

The macroscopic equations for elastic deformation and pressure are coupled with the two-scale problem for fluid flow velocity. Thus the derivation of the estimates for u_e and $\partial_t u_f$ is nonstandard and is shown in the following lemma.

Lemma 8.2. For two iterations
\[
(u^{j-1}_e, p^{j-1}_e, \partial_t u^{j-1}_e, \pi^{j-1}_e), \quad (u^j_e, p^j_e, \partial_t u^j_e, \pi^j_e), \quad (u^j_e, c^j)
\]
for limit problem (47)–(49), (75), we have the following estimates:
\[
\| \partial_t \tilde{u}^j_e \|_{L^\infty(0,s,L^2(\Omega))} + \| \tilde{u}^j_e \|_{L^\infty(0,s,L^2(\Omega))} \leq C \| \tilde{u}^j_e \|_{L^\infty(0,s,L^\infty(\Omega))},
\]
\[
\| \partial_t \tilde{u}^j_e \|_{L^\infty(0,s,L^2(\Omega \times Y_j))} + \| \tilde{p}_e \partial_t \tilde{u}^j_e \|_{L^2(\Omega \times Y_j)} \leq C \| \tilde{b}_e \|_{L^\infty(0,s,L^\infty(\Omega \times Y_j))},
\]
for $s \in (0,T]$, where $\tilde{u}^j_e = u^j_e - u^{j-1}_e, \tilde{p}_e = p^j_e - p^{j-1}_e, \partial_t \tilde{u}^j_e = \partial_t u^j_e - \partial_t u^{j-1}_e, \tilde{b}_e = b^j_e - b^{j-1}_e$, and the constant C is independent of s and solutions of the macroscopic problem.
Proof. We begin with the two-scale model for fluid flow velocity. Taking \(\partial_t \vec{u}_f^i - \partial_t \vec{u}_f^i \) as a test function in the equation for the difference \(\partial_t \vec{u}_f^i \), we obtain

\[
(\mathbf{E}^{\text{hom}}(b_{e,3}^{-1}) \mathbf{e}(\vec{u}_c^i(s)), \mathbf{e}(\vec{u}_c^i(s)))_\Omega - (\partial_t \mathbf{E}^{\text{hom}}(b_{e,3}^{-1}) \mathbf{e}(\vec{u}_c^i), \mathbf{e}(\vec{u}_c^i))_\Omega,
\]

\[
+ 2(\mathbf{E}^{\text{hom}}(b_{e,3}^1) - \mathbf{E}^{\text{hom}}(b_{e,3}^{-1})) \mathbf{e}(u_c^i(s)), \mathbf{e}(\vec{u}_c^i))_\Omega
\]

\[
- 2(\partial_t (\mathbf{E}^{\text{hom}}(b_{e,3}^1) - \mathbf{E}^{\text{hom}}(b_{e,3}^{-1})) \mathbf{e}(u_c^i), \mathbf{e}(\vec{u}_c^i))_\Omega
\]

\[
- 2((\mathbf{E}^{\text{hom}}(b_{e,3}^1) - \mathbf{E}^{\text{hom}}(b_{e,3}^{-1})) \partial_t \mathbf{e}(u_c^i), \mathbf{e}(\vec{u}_c^i))_\Omega,
\]

(92)

\[
\text{where } \vec{p}_e^{i,j} = p_e^{i,j} - p_e^{i,j-1} \text{. Equation (47) for } p_e^j \text{ and } p_e^{j-1} \text{ yields}
\]

\[
\rho_p \| \vec{p}_e^j(s) \|_{L^2(\Omega)}^2 + 2(K_p \text{grad } \vec{p}_e(s), \vec{p}_e(s))_\Omega
\]

\[
= 2(K_0 \partial_t \vec{u}_c^i + Q(x, \partial_t u_f^i) - Q(x, \partial_t u_f^{i-1}), \text{grad } \vec{p}_e(s))_\Omega + \rho_p \| \vec{p}_e^j(0) \|_{L^2(\Omega)}^2.
\]

(93)

Due to the assumptions in A1 on \(E \), we have

\[
\| \mathbf{E}^{\text{hom}}(b_{e,3}^j) - \mathbf{E}^{\text{hom}}(b_{e,3}^{j-1}) \|_{L^\infty(\Omega_s)} + \| \partial_t (\mathbf{E}^{\text{hom}}(b_{e,3}^j) - \mathbf{E}^{\text{hom}}(b_{e,3}^{j-1})) \|_{L^\infty(\Omega_s)}
\]

\[
\leq C \| \vec{b}_e^j(0) \|_{L^\infty(0,s;L^\infty(\Omega))}
\]

for \(s \in (0, T] \). The expression (50) for \(p_e^{i,j} \) and \(p_e^{i,j-1} \) and the estimates for the \(H^1 \)-norm of the solutions of the unit cell problems (43), (44), and (46) yield

\[
\| \vec{p}_e^{i,j} \|_{L^2(\Omega_s \times \Gamma)} \leq C \left(\| \text{grad } \vec{p}_e^j(0) \|_{L^2(\Omega_s)} + \| \partial_t \vec{u}_c^i \|_{L^2(\Omega_s)} + \| \partial_t \vec{u}_f^i \|_{L^2(\Omega_s \times Y_f)} \right).
\]

From the compactness of the embedding \(H^1(Y_f) \subset L^2(\Gamma) \) we obtain

\[
\| \partial_t \vec{u}_f^i \|_{L^2(\Omega_s \times Y_f)} \leq C \delta \| \partial_t \vec{u}_f^i \|_{L^2(\Omega_s \times Y_f)} + \delta \| \text{grad } \partial_t \vec{u}_f^i \|_{L^2(\Omega_s \times Y_f)}
\]

for any \(\delta > 0 \). Adding (92) and (93) and applying the Hölder and Gronwall inequalities yields

\[
\| \partial_t \vec{u}_f^i \|_{L^\infty(0,s;L^2(\Omega_s \times Y_f))} + \| \mathbf{e}_p(\partial_t \vec{u}_f^i) \|_{L^2(\Omega_s \times Y_f)} + \| \partial_t \vec{u}_f^i \|_{L^\infty(0,s;L^2(\Omega))}
\]

\[
+ \| \mathbf{e}(\vec{u}_c^i) \|_{L^\infty(0,s;L^2(\Omega_s))} + \| \vec{p}_e \|_{L^\infty(0,s;L^2(\Omega_s))} + \| \text{grad } \vec{p}_e \|_{L^2(\Omega_s)} \leq C \| \vec{b}_e^j(0) \|_{L^\infty(0,s;L^\infty(\Omega))}
\]

for all \(s \in (0, T] \).

The estimates in Lemmas 8.1 and 8.2 together with a fixed-point argument imply the existence of a unique solution of the strongly coupled limit problem (47)–(49), (75).

Lemma 8.3. There exists a unique weak solution of the limit problem (47)–(49) and (75).
Proof. Considering the equations for the difference of two iterations for (47)–(49), (75) and using estimates in Lemmas 8.1 and 8.2 yields
\begin{equation}
\begin{aligned}
&\|\partial_t(u^e_j - u^{e,1}_j)\|_{L^\infty(0,s;L^2(\Omega))} + \|e(u^e_j - u^{e,1}_j)\|_{L^\infty(0,s;L^2(\Omega))} \\
&+ \|\partial_t(u^e_j - u^{e,1}_j)\|_{L^\infty(0,s;L^2(\Omega \times Y_j))} + \|e_y(u^e_j - u^{e,1}_j)\|_{L^2(\Omega \times Y_j)} \\
&\leq C_1\|b^e_j - b^{e,1}_j\|_{L^\infty(0,s;L^\infty(\Omega))} \\
&\leq C\left[\|e(u^e_j - u^{e,1}_j)\|_{L^{1+\frac{1}{s}}(0,s;L^2(\Omega))} + \|\partial_t(u^e_j - u^{e,1}_j)\|_{L^2(\Omega \times Y_j)}\right]
\end{aligned}
\end{equation}
for \(s \in (0,T)\) and any \(0 < \sigma < 1/9\), where \(C\) is independent of \(s\) and iterative solutions of the limit problem. Considering a time interval \((0, \tilde{T})\), such that \(CT^{1/2} < 1\) and \(CT^{1/2} < 1\), and applying a fixed-point argument, we obtain the existence of a unique solution of the coupled system (47)–(49), (75) on the time interval \([0, \tilde{T}]\). Iterating this step over time intervals of length \(\tilde{T}\) yields the existence and uniqueness of a solution of the macroscopic problem (47)–(49), (75) on an arbitrary time interval \([0, T]\).

9. Incompressible case. Quasi-stationary poroelastic equations in \(\Omega^e\).

Problem (6)–(8) was derived under a number of assumptions on plant tissue. In some cases these assumptions should be changed, and system (6)–(8) should be modified accordingly.

In this section we consider two possible modifications of problem (6)–(8):

(i) the incompressible case, when the intercellular space is completely saturated with water and we have the elliptic equation for \(p^e_c\);

(ii) the quasi-stationary case for the displacement \(u^e_c\). In this case we can consider both compressible and incompressible fluid phases in the elastic part \(\Omega^e\).

In the first case the equation for \(p^e_c\) in (7) is replaced with the following elliptic equation:
\begin{equation}
-\text{div}(K^e_p \nabla p^e_c - \partial_t u^e_c) = 0 \quad \text{in } \Omega^e_{c,T}.
\end{equation}

In the second situation we consider in (7) the quasi-stationary equations for \(u^e_c\),
\begin{equation}
-\text{div}(\mathbf{E}^e(b^e_c)\mathbf{e}(u^e_c)) + \nabla p^e_c = 0 \quad \text{in } \Omega^e_{e,T}.
\end{equation}

In the incompressible case, i.e., \(p^e_c\) satisfies (95), Definition 2.4 of a weak solution of microscopic problem (6)–(8) should be modified. Namely, we assume that
\begin{equation}
p^e_c \in L^2(0,T;H^1(\Omega^e)) \quad \text{with } \int_{\Omega^e} p^e_c(t,x) \, dx = 0 \quad \text{for } t \in (0,T)
\end{equation}
and no initial conditions for \(p^e_c\) are required. Additionally we assume that
\[\int_{\partial \Omega} F_p(t,x) \, dx = 0 \quad \text{for } t \in (0,T).\]

The analysis of the quasi-stationary problems considered in this section is very similar to the analysis of (6)–(8) presented in the previous sections. The only part that should be slightly modified is the derivation of a priori estimates.

For the incompressible case, in the same way as in the proof of Lemma 3.2, but now with (95) for \(p^e_c\), we obtain
\begin{equation}
\begin{aligned}
&\|\partial_t u^e_c(s)\|_{L^2(\Omega^e)}^2 + \|e(u^e_c(s))\|_{L^2(\Omega^e)}^2 + \|\nabla p^e_c(s)\|_{L^2(\Omega^e)}^2 + \varepsilon^2\|e(\partial_t u^e_j)\|_{L^2(\Omega^e)}^2 \\
&+ \|\partial_t u^e_j(s)\|_{L^2(\Omega^e)}^2 \leq \delta \left[\|u^e_c(s)\|_{L^2(\partial \Omega)}^2 + \|p^e_c\|_{L^2((0,s) \times \partial \Omega)}^2 \right] + C_1\|e(u^e_c)\|_{L^2(\Omega^e)}^2 \\
&+ C_6\left[\|F_u\|_{L^\infty(0,s;L^2(\partial \Omega))} + \|\partial_t F_u\|_{L^2((0,s) \times \partial \Omega)} + \|F_p\|_{L^2((0,s) \times \partial \Omega)}\right] + C_2
\end{aligned}
\end{equation}
for \(s \in (0, T] \) and arbitrary \(\delta > 0 \). Then, as in the proof of Lemma 3.2, applying the trace and Korn inequalities [33] and using extension properties of \(u^e_\varepsilon \) and assumptions A5 on initial data \(u^e_{\varepsilon,0} \), \(u^i_{\varepsilon,0} \), and \(u^f_{\varepsilon,0} \), we obtain estimates (19), (20), and (22). The trace and Poincaré inequalities together with the constraints in (97) and properties of an extension of \(p^e_\varepsilon \) from \(\Omega^e \) to \(\Omega \) (see Lemma 3.1) ensure that

\[
\|p^e_\varepsilon\|_{L^2((0,s)\times \partial \Omega)} \leq C \|\nabla p^e_\varepsilon\|_{L^2(\Omega^e\setminus s)}
\]

for \(s \in (0, T] \). Then applying the Gronwall inequality, we obtain from (98) the estimates for \(u^e_\varepsilon \), \(\partial_t u^e_\varepsilon \), \(p^e_\varepsilon \), and \(\partial_t u^f_\varepsilon \) in (21).

Differentiating the equations in (7) and (95) with respect to time \(t \) and taking \((\partial^2_t u^e_\varepsilon, \partial_t p^e_\varepsilon, \partial^2_t u^f_\varepsilon)\) as test functions in the weak formulation of the resulting equations, we obtain

\[
\begin{align*}
\rho_\varepsilon \|\partial^2_t u^e_\varepsilon(s)\|_{L^2(\Omega^e)}^2 + &\langle \mathbf{E}^e(b^e_\varepsilon, s)\mathbf{e}(\partial_t u^e_\varepsilon(s)), \mathbf{e}(\partial_t u^e_\varepsilon(s))\rangle_{\Omega^e} \\
+ &2\langle (K^e_\varepsilon \nabla \partial_t p^e_\varepsilon, \nabla \partial_t p^e_\varepsilon)_{\Omega^e}, \rho_f \|\partial^2_t u^f_\varepsilon(s)\|_{L^2(\Gamma^f)} + 2\mu \varepsilon^2 \|\mathbf{e}(\partial^2_t u^f_\varepsilon)\|_{L^2(\Gamma^f)}^2 \\
= &2\langle \partial_t F^e, \partial^2_t u^e_\varepsilon(s)\rangle_{\partial \Omega} + 2\langle \partial_t F^e, \partial^2_t u^e_\varepsilon(0)\rangle_{\partial \Omega} + \rho_\varepsilon \|\partial^2_t u^e_\varepsilon(s)\|_{L^2(\Omega^e)}^2 \\
+ &\rho_f \|\partial^2_t u^f_\varepsilon(0)\|_{L^2(\Gamma^f)}^2 + 2\langle \partial_t \mathbf{E}^e(b^e_\varepsilon, s)\mathbf{e}(u^e_\varepsilon(s)), \mathbf{e}(\partial_t u^e_\varepsilon(s))\rangle_{\Omega^e} \\
+ &\langle \mathbf{E}^e(b^e_\varepsilon, s)\mathbf{e}(u^f_\varepsilon(0)), \mathbf{e}(\partial_t u^f_\varepsilon(0))\rangle_{\Omega^e} - 2\langle \partial^2_t \mathbf{E}^e(b^e_\varepsilon, s)\mathbf{e}(u^f_\varepsilon(0)), \partial_t \mathbf{E}^e(b^e_\varepsilon, s)\mathbf{e}(\partial_t u^e_\varepsilon)\rangle_{\Omega^e}
\end{align*}
\]

for \(s \in (0, T] \). As before, applying the Korn inequality and the Poincaré inequality together with the constraint in (97), we obtain the estimates for \(\partial^2_t u^e_\varepsilon \), \(\partial_t p^e_\varepsilon \), and \(\partial^2_t u^f_\varepsilon \) stated in (15). The equations for \(\partial_t u^f_\varepsilon \) and \(u^e_\varepsilon \) and calculations similar to those in the proof of Lemma 3.2 ensure the estimate for \(p^f_\varepsilon \).

To derive the a priori estimates in the second case, when \(u^e_\varepsilon \) satisfies the quasistationary equations (96), we have to check that the Korn inequality holds for \(u^e_\varepsilon \).

Lemma 9.1. For \(u^e_\varepsilon(s) \in H^1(\Omega^e) \), with \(s \in (0, T] \), we have the following estimate:

\[
\begin{align*}
\|u^e_\varepsilon(s)\|_{H^1(\Omega^e)} &\leq C [[\|\mathbf{e}(u^e_\varepsilon(s))\|_{L^2(\Omega^e)} + \varepsilon^{\frac{1}{2}} \|\Pi_\tau \partial_t u^f_\varepsilon\|_{L^2(\Gamma^f)} + \|u^e_\varepsilon(0)\|_{H^1(\Omega)}], \\
\|\partial_t u^e_\varepsilon(s)\|_{H^1(\Omega^e)} &\leq C [[\|\partial_t \mathbf{e}(u^e_\varepsilon(s))\|_{L^2(\Omega^e)} + \varepsilon^{\frac{1}{2}} \|\Pi_\tau \partial_t u^f_\varepsilon\|_{L^2(\Gamma^f)}].
\end{align*}
\]

Proof. Consider first \(Y_\varepsilon \) and \(\mathcal{V} = \{ v \in H^1(\mathbb{Y}^e) : \Pi_\tau v = 0 \) on \(\Gamma \} \). Then since \(\mathcal{V} \cap \mathcal{R}(Y_\varepsilon) = \{ 0 \} \), where \(\mathcal{R}(Y_\varepsilon) \) is the space of all rigid displacements, we have

\[
\|v\|_{H^1(Y_\varepsilon)}^2 \leq C \|[\mathbf{e}(v)]_{L^2(\mathbb{Y}^e)} + [\Pi_\tau v]_{L^2(\Gamma^f)}^2
\]

Considering scaling \(x = \varepsilon y \) and summing over \(\xi \in \Xi_\varepsilon \), we obtain

\[
\|v\|_{L^2(\hat{\Omega}^e)}^2 + \varepsilon^2 \|\nabla v\|_{L^2(\hat{\Omega}^e)}^2 \leq C \|[\mathbf{e}(v)]_{L^2(\hat{\Omega}^e)}^2 + \varepsilon[\Pi_\tau v]_{L^2(\Gamma^f)}^2
\]

where \(\hat{\Omega}^e = \text{Int}(\bigcup_{\xi \in \Xi_\varepsilon} \varepsilon(\mathbb{Y}^e + \xi)) \). Using the fact that \(\Pi_\tau \partial_t u^e_\varepsilon = \Pi_\tau \partial_t u^f_\varepsilon \) on \(\Gamma^e \) and estimating \(u^e_\varepsilon \) by \(\partial_t u^e_\varepsilon \) and the initial value \(u^e_\varepsilon(0) \), we obtain

\[
\|\Pi_\tau u^e_\varepsilon(s)\|_{L^2(\Gamma^f)} \leq C \|[\Pi_\tau \partial_t u^f_\varepsilon]_{L^2(\Gamma^f)} + \|u^e_\varepsilon(0)\|_{L^2(\Gamma^f)}\].
\]

Hence applying (103) to \(u^e_\varepsilon \) and using the fact that \(\varepsilon \|u^e_\varepsilon(0)\|_{L^2(\Gamma^f)}^2 \leq C \|u^e_\varepsilon(0)\|_{H^1(\Omega)}^2 \), we have

\[
\|u^e_\varepsilon(s)\|_{L^2(\hat{\Omega}^e)}^2 \leq C \|[\mathbf{e}(u^e_\varepsilon(s))]_{L^2(\hat{\Omega}^e)}^2 + \varepsilon \|[\Pi_\tau \partial_t u^f_\varepsilon]_{L^2(\Gamma^f)}^2 + \|u^e_\varepsilon(0)\|_{H^1(\Omega)}^2\].
\]
Then considering the extension of \(u_\varepsilon^e \) from \(\Omega_\varepsilon^e \) to \(\Omega \) (see, e.g., [33]) and applying the Korn inequality in \(\Omega \) yields the estimate stated in the lemma.

Then, in the same way as in the proof of Lemma 3.2, applying the Korn inequalities proved in Lemma 9.1 and using extension properties of \(u_\varepsilon^e \) and the regularity of the initial data \(u_{10}^e \in H^2(\Omega)^3 \), we obtain the following a priori estimates for solutions of the quasi-stationary problem:

\[
\begin{align*}
\|u_\varepsilon^e\|_{L^\infty(0,T;L^1(\Omega_\varepsilon^e))} + \|\partial_t u_\varepsilon^e\|_{L^\infty(0,T;H^1(\Omega_\varepsilon^e))} & \leq C, \\
\|p_\varepsilon^e\|_{L^2(0,T;H^1(\Omega_\varepsilon^e))} + \|\partial_t p_\varepsilon^e\|_{L^2(0,T;H^1(\Omega_\varepsilon^e))} & \leq C, \\
\|\partial_t u_f^\varepsilon\|_{L^\infty(0,T;L^2(\Omega_\varepsilon^e))} + \|\partial_{x_t} u_f^\varepsilon\|_{L^\infty(0,T;L^2(\Omega_\varepsilon^e))} & + \varepsilon\|\nabla \partial_t u_f^\varepsilon\|_{H^1(0,T;L^2(\Omega_\varepsilon^e))} + \|p_f^\varepsilon\|_{L^2(\Omega_\varepsilon^e,T_c)} & \leq C,
\end{align*}
\]

(104)

where the constant \(C \) is independent of \(\varepsilon \). Notice that in the incompressible and quasi-stationary case, i.e., in the case of (95) and (96) for \(p_\varepsilon^e \) and \(u_\varepsilon^e \), respectively, problem (7), (8), (95), and (96) is well-posed without the initial conditions for \(u_\varepsilon^e \) and \(p_\varepsilon^e \). In this case \(u_\varepsilon^e(0,\cdot) \) and \(\partial_t u_\varepsilon^e(0,\cdot) \) are determined from the corresponding elliptic equations and the initial values for the fluid flow \(u_{10}^e \).

In contrast with the limit equations given by (47), in the quasi-stationary and incompressible case the macroscopic equations for effective displacement and pressure do not contain time derivatives and take the form

\[
\begin{align*}
&-\text{div}(\mathbf{E}^{\text{hom}}(b_{c,3})\mathbf{e}(u_e)) + \nabla p_c + \partial_f \rho_f \int_{Y_f} \partial_{x_t} u_f \, dy = 0 \quad \text{in} \quad \Omega_T, \\
&-\text{div}(K^p_{\text{hom}} \nabla p_c - K_u \partial_t u_c - Q(x, \partial_t u_f)) = 0 \quad \text{in} \quad \Omega_T, \\
&\mathbf{E}^{\text{hom}}(b_{c,3})\mathbf{e}(u_e) n = F_n \quad \text{on} \quad (\partial\Omega)_T, \\
&(K^p_{\text{hom}} \nabla p_c - K_u \partial_t u_c) \cdot n = F_p + Q(x, \partial_t u_f) \cdot n \quad \text{on} \quad (\partial\Omega)_T,
\end{align*}
\]

(105)

together with the two-scale equations (49) for \(u_f \) and \(\pi_f \).

10. Appendix. Here we provide proofs of the estimates for \(\|b_\varepsilon^e\|_{L^\infty(0,T;L^1(\Omega_\varepsilon^e))} \), \(\|c_\varepsilon^e\|_{L^\infty(0,T;L^1(\Omega_\varepsilon^e))} \) and for the difference \(\|b_\varepsilon^{e,j}\|_{L^\infty(0,T;L^1(\Omega_\varepsilon^e))} \) of two iterations for system (6)–(8).

Lemma 10.1. Under assumptions A1–A5 solutions of the microscopic problem (6)–(8) satisfy the following estimates:

\[
\begin{align*}
\|b_\varepsilon^e\|_{L^\infty(0,T;L^1(\Omega_\varepsilon^e))} & \leq C, \\
\|c_\varepsilon^e\|_{L^\infty(0,T;L^1(\Omega_\varepsilon^e))} & + \|c_\varepsilon^{e,j}\|_{L^\infty(0,T;L^1(\Omega_\varepsilon^e))} & \leq C,
\end{align*}
\]

(106)

where the constant \(C \) is independent of \(\varepsilon \).

Proof. To show that \(|b_\varepsilon^e|^p \) for \(p \geq 2 \) is an admissible test function for (10), we set \(b_{\varepsilon,N}(t,x) = \min\{b_\varepsilon^e(t,x), N\} \) for \((t,x) \in \Omega_\varepsilon^e,T \), where \(N > \|b_{e0}\|_{L^\infty(\Omega)} \), and derive estimates for \(|b_{\varepsilon,N}|^p \) independent of \(N \). Then letting \(N \to \infty \), we obtain the desired estimates for \(b_\varepsilon^e \). Taking \((b_{\varepsilon,N})^{p-1} \) as a test function in (10) and applying simple
calculations, we obtain
\[
\| \varepsilon^{e,N}_c(s) \|_{L^p(\Omega_t^e)} + \| \nabla \varepsilon^{e,N}_c \|_{L^2(\Omega_t^e)}^2 \leq C_1 \left[\| e(u^e_c) \|_{L^\infty(0,s;L^2(\Omega_e^s))} + |\int_0^s \| \varepsilon^{e,N}_c \|_{L^2(\Omega_e^s)} \| \varepsilon^{e,N}_c \|_{L^2(\Omega_t^e)}^p \, dt \right]^{\frac{1}{p}} + C_2 \| \varepsilon^{e,N}_c \|_{L^p(\Omega_t^e)} + C_3 \| \varepsilon^{e,N}_c \|_{L^\infty(0,s;L^2(\Omega_e^s))} \| \varepsilon^{e,N}_c \|_{L^2(\Omega_e^s)}^\frac{1}{2} \| \varepsilon^{e,N}_c \|_{L^\infty(0,s;L^2(\Omega_e^s))}^\frac{1}{2} \| \varepsilon^{e,N}_c \|_{L^2(\Omega_t^e)}^{p-1} \quad (107)
\]
for \(s \in (0,T] \). Here we used the fact that the definition of \(\varepsilon^{e,N}_c \) implies
\[
\langle \nabla \varepsilon^{e,N}_c, \nabla (\varepsilon^{e,N}_c)^{p-1} \rangle_{\Omega_t^e} = \langle \nabla \varepsilon^{e,N}_c, \nabla (\varepsilon^{e,N}_c)^{p-1} \rangle_{\Omega_t^e},
\]
and that due to the inequality \(\varepsilon^{e,N}_c \geq 0 \) in \(\Omega_t^e \), we have
\[
\langle \partial_t \varepsilon^{e,N}_c, \varepsilon^{e,N}_c \rangle_{\Omega_t^e} \geq \frac{1}{p} \| \varepsilon^{e,N}_c(s) \|_{L^p(\Omega_e^s)}^p - \frac{1}{p} \| \varepsilon^{e,N}_c(s) \|_{L^p(\Omega_e^s)}^p - \| \varepsilon^{e,N}_c \|_{L^p(\Omega_e^s)},
\]
Here \(\Omega_t^e N(t) = \{ x \in \Omega_t^e : b^e_c(t,x) \leq N \} \) for \(t \in (0,T) \). Applying the Gagliardo-Nirenberg inequality, we can estimate
\[
\| \varepsilon^{e,N}_c \|_{L^p(\Omega_e^s)}^p = \| \varepsilon^{e,N}_c \|_{L^2(\Omega_e^s)}^{2a} \leq C \| \nabla \varepsilon^{e,N}_c \|_{L^2(\Omega_e^s)}^{2a} \| \varepsilon^{e,N}_c \|_{L^2(\Omega_e^s)}^{1-a} \quad (108)
\]
with \(a = 9/10 \). Using the embedding \(L^2(0,s;H^1(\Omega_e^s)) \subset L^2(0,s;L^6(\Omega_e^s)) \), in space dimensions two and three, and applying the Gagliardo-Nirenberg inequality to \(\| \varepsilon^{e,N}_c \|_{L^2(\Omega_e^s)}^{2a} \), yields
\[
\int_0^s \| \varepsilon^{e,N}_c \|_{L^2(\Omega_e^s)}^{p-1} \| \varepsilon^{e,N}_c \|_{L^2(\Omega_e^s)}^{\frac{p-1}{2}} \, dt \leq \int_0^s \| \nabla \varepsilon^{e,N}_c \|_{L^2(\Omega_e^s)}^{\frac{3(p-1)}{2}} \, dt.
\]
Then using the Hölder inequality on the right-hand side of the last estimate, we obtain
\[
\int_0^s \| \varepsilon^{e,N}_c \|_{L^2(\Omega_e^s)}^{p-1} \| \varepsilon^{e,N}_c \|_{L^2(\Omega_e^s)}^{\frac{p-1}{2}} \, dt \leq C \left[\int_0^s \| \nabla \varepsilon^{e,N}_c \|_{L^2(\Omega_e^s)}^{\frac{2p}{p-2}} + \| \nabla \varepsilon^{e,N}_c \|_{L^2(\Omega_e^s)}^{\frac{2p}{p-2}} \right]^{\frac{2}{p}} \sup_{(0,s)} \| \varepsilon^{e,N}_c \|_{L^2(\Omega_e^s)} \left[\int_0^s \| \nabla \varepsilon^{e,N}_c \|_{L^2(\Omega_e^s)}^{\frac{3(p-2)}{2p-3}} \, dt \right]^{\frac{2p-3}{2p}}.
\]
For \(p \geq 3 \) we can estimate
\[
\| \nabla \varepsilon^{e,N}_c \|_{L^2(\Omega_t^e)}^{\frac{2p}{p-2}} \leq \| \nabla \varepsilon^{e,N}_c \|_{L^2(\Omega_t^e)}^{\frac{2p}{p-2}} + \| \nabla \varepsilon^{e,N}_c \|_{L^2(\Omega_t^e)}^{\frac{2p}{p-2}} \leq \| \nabla \varepsilon^{e,N}_c \|_{L^2(\Omega_t^e)}^{\frac{2p}{p-2}} + \| \nabla \varepsilon^{e,N}_c \|_{L^2(\Omega_t^e)}^{\frac{2p}{p-2}},
\]
\[
\| \nabla \varepsilon^{e,N}_c \|_{L^2(\Omega_t^e)}^{\frac{2p}{p-2}} \leq \| \nabla \varepsilon^{e,N}_c \|_{L^2(\Omega_t^e)}^{\frac{2p}{p-2}} + \| \nabla \varepsilon^{e,N}_c \|_{L^2(\Omega_t^e)}^{\frac{2p}{p-2}} \leq \| \nabla \varepsilon^{e,N}_c \|_{L^2(\Omega_t^e)}^{\frac{2p}{p-2}} + \| \nabla \varepsilon^{e,N}_c \|_{L^2(\Omega_t^e)}^{\frac{2p}{p-2}},
\]
\[
\| \nabla \varepsilon^{e,N}_c \|_{L^2(\Omega_t^e)}^{\frac{2p}{p-2}} \leq \| \nabla \varepsilon^{e,N}_c \|_{L^2(\Omega_t^e)}^{\frac{2p}{p-2}} + \| \nabla \varepsilon^{e,N}_c \|_{L^2(\Omega_t^e)}^{\frac{2p}{p-2}} \leq \| \nabla \varepsilon^{e,N}_c \|_{L^2(\Omega_t^e)}^{\frac{2p}{p-2}} + \| \nabla \varepsilon^{e,N}_c \|_{L^2(\Omega_t^e)}^{\frac{2p}{p-2}},
\]
\[\frac{2p}{p-2} \]
where \(\Omega_{e,s}^{c,1} = \{(t,x) \in \Omega_{e,s}^{c} : b_c^e(t,x) \leq 1\} \). Also notice that for \(p \geq 3 \) we have \(\frac{3}{4} (2p - 2) \leq 1 \) and \(\frac{2p}{3} \leq p - 1 \). Thus applying the Young inequality in (109) yields

\[
\int_0^s \| b_c^e \|_{L^p(\Omega^c)} \| b_{e,N}^c \|_{L^{p-1}(\Omega^c)} dt \leq \delta_1 \sup_{(s,t)} \| b_{e,N}^c \|_{L^p(\Omega^c)} + \delta_2 \| \nabla b_{e,N}^c \|_{L^2(\Omega^c)}^2 + C_\delta \left(1 + \| b_c^e \|_{L^{p-1}(\Omega^c)} + \| \nabla b_{e,N}^c \|_{L^2(\Omega^c)}^2 \right)^{\frac{2}{p}}
\]

for any \(\delta_1 > 0 \) and \(\delta_2 > 0 \). Using the trace inequality, we estimate the integral over \(\Gamma_c^e \) as

\[
\varepsilon \langle |P(b_c^e)|, |b_{e,N}^c|^{p-1} \rangle_{\Gamma_c^e} \leq C_1 \varepsilon \langle 1 + |b_c^e|, |b_{e,N}^c|^{p-1} \rangle_{\Gamma_c^e}
\]

\[
\leq C_2 \varepsilon \left[1 + \| b_c^e \|_{L^2(\Omega^e)}^2 \| \nabla b_{e,N}^c \|_{L^2(\Omega^e)}^{\frac{2}{p-1}} + \| b_{e,N}^c \|_{L^2(\Omega^e)}^{\frac{2}{p}} \| \nabla b_{e,N}^c \|_{L^2(\Omega^e)}^{\frac{2}{p}} + \| \nabla b_{e,N}^c \|_{L^2(\Omega^e)}^2 \right]^{\frac{2}{p-1}}
\]

\[
\times \left[\| b_{e,N}^c \|_{L^2(\Omega^e)}^{\frac{2}{p}} + \| \nabla b_{e,N}^c \|_{L^2(\Omega^e)}^{\frac{2}{p}} \right]^{\frac{p-1}{p}} dt
\]

\[
\leq C_3 \varepsilon \left[1 + \| b_c^e \|_{L^2(\Omega^c)}^2 \| \nabla b_{e,N}^c \|_{L^2(\Omega^c)}^{\frac{2}{p-1}} + \| b_{e,N}^c \|_{L^2(\Omega^c)}^{\frac{2}{p}} \| \nabla b_{e,N}^c \|_{L^2(\Omega^c)}^{\frac{2}{p}} + \| \nabla b_{e,N}^c \|_{L^2(\Omega^c)}^2 \right]^{\frac{2}{p-1}}
\]

Applying the Young inequality on the right-hand side of (112) and using (110), together with the uniform estimate of \(\| \nabla b_{e,N}^c \|_{L^2(\Omega^c)} \) obtained in Lemma 3.2, yields

\[
\varepsilon \langle |P(b_c^e)|, |b_{e,N}^c|^{p-1} \rangle_{\partial \Omega_N} \leq C(\varepsilon) \left[1 + \| b_c^e \|_{L^2(\Omega^c)}^{\frac{p-1}{p}} \| \nabla b_{e,N}^c \|_{L^2(\Omega^c)}^{\frac{p-1}{p}} + \| b_{e,N}^c \|_{L^2(\Omega^c)}^{\frac{p-1}{p}} \| \nabla b_{e,N}^c \|_{L^2(\Omega^c)}^{\frac{p-1}{p}} \right] + \delta_1 \sup_{(s,t)} \| b_{e,N}^c \|_{L^p(\Omega^c)} + \delta_2 \| \nabla b_{e,N}^c \|_{L^2(\Omega^c)}^2.
\]

The same calculations together with (110) ensure that

\[
\langle |F(b_c^e)|, |b_{e,N}^c|^{p-1} \rangle_{\partial \Omega_N} \leq C(\varepsilon) \left[1 + \| b_c^e \|_{L^2(\Omega^c)}^{\frac{p-1}{p}} \| \nabla b_{e,N}^c \|_{L^2(\Omega^c)}^{\frac{p-1}{p}} \right] + \delta_1 \sup_{(s,t)} \| b_{e,N}^c \|_{L^p(\Omega^c)} + \delta_2 \| \nabla b_{e,N}^c \|_{L^2(\Omega^c)}^2.
\]

Considering \(p = 3 \) and using the standard a priori estimates (27) for \(b_c^e \) yields

\[
\int_0^s \| b_c^e \|_{L^6(\Omega^c)} \| b_{e,N}^c \|_{L^6(\Omega^c)} dt \leq C \left[\int_0^s \left(\| b_c^e \|_{L^2(\Omega^c)}^2 + \| \nabla b_{e,N}^c \|_{L^2(\Omega^c)}^2 \right) dt \right]^{\frac{1}{2}}
\]

\[
\times \sup_{(s,t)} \| b_{e,N}^c \|_{L^6(\Omega^c)}^2 \left[\int_0^s \| \nabla b_{e,N}^c \|_{L^2(\Omega^c)}^2 dt \right]^{\frac{1}{2}}
\]

\[
\leq C_\delta + \delta_1 \sup_{(s,t)} \| b_{e,N}^c(s) \|_{L^6(\Omega^c)}^2 + \delta_2 \| \nabla b_{e,N}^c \|_{L^2(\Omega^c)}^2.
\]
For the boundary integrals, for \(p = 3 \), we have
\[
\varepsilon \langle \mathcal{P}(b^e_\varepsilon), |b^e_{\varepsilon,N}|^2 \rangle_{\Gamma^e_{s}} + \langle \mathcal{F}_b(b^e_\varepsilon), |b^e_{\varepsilon,N}|^2 \rangle_{\partial \Omega_s} \\
\leq C_1(\varepsilon) \left[1 + \|b^e_\varepsilon\|_{L^\infty((0,s);L^2(\Omega^e_s))} \right] \|\nabla b^e_\varepsilon\|_{L^2(\Omega^e_s)}^2 \\
\cdot \sup_{(0,s)} \|b^e_{\varepsilon,N}|^2 \| \frac{5}{2} \|\nabla b^e_\varepsilon\|_{L^2(\Omega^e_s)}^2 \\
\leq C_2(\varepsilon) \left[1 + \|b^e_\varepsilon\|_{L^\infty((0,s);L^2(\Omega^e_s))} \right] \|\nabla b^e_\varepsilon\|_{L^2(\Omega^e_s)}^2 \\
+ \delta_1 \sup_{(0,s)} \|b^e_{\varepsilon,N}(s)|^3_{L^3(\Omega_s)} + \delta_2 \|\nabla b^e_\varepsilon\|_{L^2(\Omega^e_s)}^2.
\]
(114)

Considering (107) for \(p = 3 \) and using the estimates (108), (113), and (114) together with the standard a priori estimates for \(b^e_\varepsilon, c^e_\varepsilon, \) and \(u^e_\varepsilon \) shown in Lemma 3.2, we obtain
\[
\|b^e_{\varepsilon,N}(s)|^3_{L^3(\Omega_s)} + \|\nabla b^e_{\varepsilon,N}|^2 \|_{L^2(\Omega^e_s)} \\
\leq C(\varepsilon) + \delta_1 \sup_{(0,s)} \|b^e_{\varepsilon,N}(s)|^3_{L^3(\Omega_s)} + \delta_2 \|\nabla b^e_\varepsilon\|_{L^2(\Omega^e_s)}^2
\]
with \(s \in (0,T) \), a constant \(C(\varepsilon) \) independent of \(N \), and arbitrary \(0 < \delta_1 \leq \frac{1}{2} \) and \(0 < \delta_2 \leq \frac{1}{2} \). Considering the supremum over \((0,s)\) and taking the limit \(N \to \infty \) yields that \(b^e_\varepsilon \in L^\infty(0,T;L^3(\Omega^e_s)) \) and \(\nabla b^e_\varepsilon \in L^2(\Omega^e_s) \). Taking iteratively \(p = 4, 5, \ldots \) and choosing \(\delta_1 > 0 \) and \(\delta_2 > 0 \) sufficiently small for each fixed \(p \) and for fixed \(\varepsilon \), we obtain estimates for \(\|b^e_{\varepsilon,N}|^p_{L^\infty((0,T);L^p(\Omega^e_s))} \) and \(\|\nabla b^e_\varepsilon\|_{L^p(\Omega^e_s)}^p \) independent of \(N \). Letting \(N \to \infty \) yields that \(b^e_\varepsilon \in L^\infty(0,T;H^1(\Omega^e_s)) \) and \(b^e_\varepsilon \in L^\infty(0,T;L^p(\Omega^e_s)) \) for every fixed \(p \geq 2 \).

Now we consider \((b^e_\varepsilon)^{p-1}\) as a test function in (10) and obtain
\[
\frac{1}{p} \|b^e_\varepsilon(s)|^p_{L^p(\Omega_s)} + \frac{4(p-1)}{p^2} \|\nabla b^e_\varepsilon\|_{L^2(\Omega^e_s)}^2 \leq \frac{1}{p} \|b^e_\varepsilon\|_{L^p(\Omega_s)}^p + \|b^e_{\varepsilon,N}|^p_{L^p(\Omega^e_s)} \\
+ C_1 \left(|c^e_\varepsilon|_{L^\infty((0,s);L^2(\Omega^e_s))} + |\mathcal{F}_e(u^e_\varepsilon)|_{L^\infty((0,s);L^2(\Omega^e_s))} \right) + \|b^e_\varepsilon\|_{L^2(\Omega^e_s)}^2 \\
+ C_2 \left(|c^e_\varepsilon|_{L^p((0,s);L^2(\Omega^e_s))} + |\mathcal{F}_e(u^e_\varepsilon)|_{L^p((0,s);L^2(\Omega^e_s))} \right) \\
+ \varepsilon \langle \mathcal{P}(b^e_\varepsilon), |b^e_\varepsilon|^{p-1}_{\Gamma^e_{s}} \rangle_{\Gamma^e_{s}} + \langle \mathcal{F}_b(b^e_\varepsilon), |b^e_\varepsilon|^{p-1}_{\partial \Omega_s} \rangle_{\partial \Omega_s}
\]
(115)

for \(s \in (0,T) \). The integral over \(\Gamma_s^e \) is estimated as
\[
\varepsilon \langle \mathcal{P}(b^e_\varepsilon), |b^e_\varepsilon|^{p-1}_{\Gamma^e_{s}} \rangle_{\Gamma^e_{s}} \leq C_1 \varepsilon \left(1 + \|b^e_\varepsilon\|_{L^2(\Omega^e_s)}^2 \right) + \varepsilon^2 \|\nabla b^e_\varepsilon\|_{L^2(\Omega^e_s)}^2
\]

Using the properties of extension of \(b^e_\varepsilon \) from \(\Omega^e_s \) to \(\Omega \) and applying the Gagliardo–Nirenberg inequality
\[
\|w\|_{L^2(\Omega)} \leq C \|\nabla w\|_{L^2(\Omega)}^{\alpha_1} \|w\|_{L^1(\Omega)}^{1-\alpha_1}, \quad \|w\|_{L^4(\Omega)} \leq C \|\nabla w\|_{L^2(\Omega)}^{\alpha_2} \|w\|_{L^1(\Omega)}^{1-\alpha_2},
\]
with \(\alpha_1 = \frac{3}{2} \) and \(\alpha_2 = \frac{9}{10} \), we obtain
\[
\varepsilon \langle \mathcal{P}(b^e_\varepsilon), |b^e_\varepsilon|^{p-1}_{\Gamma^e_{s}} \rangle_{\Gamma^e_{s}} \leq C_1 \left(1 + \|b^e_\varepsilon\|_{L^2(\Omega^e_s)}^2 \right) + \varepsilon^2 \|\nabla b^e_\varepsilon\|_{L^2(\Omega^e_s)}^2, \\
\langle \mathcal{F}_b(b^e_\varepsilon), |b^e_\varepsilon|^{p-1}_{\partial \Omega_s} \rangle_{\partial \Omega_s} \leq C \left(1 + \|b^e_\varepsilon\|_{L^2(\Omega^e_s)}^2 \right)
\]

© 2017 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license
Then applying the Gagliardo–Nirenberg inequality and the extension lemma, Lemma 3.1, to $\|\varepsilon_{\alpha}(\tilde{\varepsilon})\|_{L^2(\Omega_{\varepsilon},s)}$ and $\|\varepsilon_{\beta}(\tilde{\varepsilon})\|_{L^2(0,s;L^4(\Omega_{\varepsilon}))}$ in (115) and using the estimates (27) yields

$$\|b_\alpha(s)\|_{L^p(\Omega_{\varepsilon})}^p + \|\nabla b_\alpha(s)\|_{L^2(\Omega_{\varepsilon},s)}^2 \leq C_4^p + C_2(1 + p^{10}) \int_0^s \|b_\alpha(t)\|_{L^1(\Omega_{\varepsilon},s)}^2 dt,$$

where the constants C_1 and C_2 are independent of ε. Then the Allikas iteration lemma implies the boundedness of b_α, uniformly in ε.

We turn to c^ε. Considering first $(c_{\alpha,N}^\varepsilon)^{p-1}$ and $(c_{f,N}^\varepsilon)^{p-1}$, where $c_{\alpha,N}(t,x) = \min\{c_\alpha(t,x), N\}$ for $(t,x) \in \Omega_{\alpha,T}$ with $j = e,f$ and $N > 0$, as test functions in (11) and performing calculations similar to those in the derivation of (107), we obtain

$$\|c_{\alpha,N}^\varepsilon(s)\|_{L^p(\Omega_{\varepsilon})}^p + \|c_{f,N}^\varepsilon(s)\|_{L^p(\Omega_{\varepsilon})}^p \leq \|c_{\alpha,N}^\varepsilon(0)\|_{L^p(\Omega_{\varepsilon})}^p + \|c_{f,N}^\varepsilon(0)\|_{L^p(\Omega_{\varepsilon})}^p + C_1 [1 + \|\nabla c_{\alpha,N}^\varepsilon(\Omega_{\varepsilon})\|_{L^\infty(\Omega_{f,T})}] [\|c_{f,N}^\varepsilon(\Omega_{f,T})\|_{L^p(\Omega_{f,T})}^p]
+ C_2 \left[\|b_\alpha\|_{L^p(\Omega_{\varepsilon})}^p + \|c_{\alpha,N}^\varepsilon(\Omega_{\varepsilon})\|_{L^p(\Omega_{\varepsilon})}^p\right] + C_3 \int_0^s \left[1 + \|c_{\alpha,N}^\varepsilon(\Omega_{\varepsilon})\|_{L^p(\Omega_{f,T})}^p\right] dt
+ C_4 \left[\|c_{\alpha,N}^\varepsilon(0)\|_{L^\infty(0,s;L^2(\Omega_{\varepsilon}))} \left[\|b_\alpha\|_{L^{p-1}(\Omega_{\varepsilon})} + \|c_{\alpha,N}^\varepsilon(0)\|_{L^p(\Omega_{\varepsilon})}^p\right] + \|\nabla c_{\alpha,N}^\varepsilon(\Omega_{\varepsilon})\|_{L^p(\Omega_{\varepsilon})}^p\right]
+ C_5 \left[\|c_{f,N}^\varepsilon(0)\|_{L^\infty(0,s;L^2(\Omega_{\varepsilon}))} \left[\|b_\alpha\|_{L^{p-1}(\Omega_{\varepsilon})} + \|c_{f,N}^\varepsilon(0)\|_{L^p(\Omega_{\varepsilon})}^p\right] + \|\nabla c_{f,N}^\varepsilon(\Omega_{\varepsilon})\|_{L^p(\Omega_{\varepsilon})}^p\right]
+ C_6 \left[\|c_{f,N}^\varepsilon(0)\|_{L^\infty(0,s;L^2(\Omega_{\varepsilon}))} \left[\|b_\alpha\|_{L^{p-1}(\Omega_{\varepsilon})} + \|c_{f,N}^\varepsilon(0)\|_{L^p(\Omega_{\varepsilon})}^p\right] + \|\nabla c_{f,N}^\varepsilon(\Omega_{\varepsilon})\|_{L^p(\Omega_{\varepsilon})}^p\right].$$

Similar to (111) we estimate

$$\int_0^s \|c_{\alpha,N}^\varepsilon\|_{L^p(\Omega_{\varepsilon})}^p \|c_{f,N}^\varepsilon\|_{L^{p-1}(\Omega_{f,T})} \leq \delta_1 \sup_{(0,s)} \|c_{\alpha,N}^\varepsilon(s)\|_{L^p(\Omega_{\varepsilon})}^p + \delta_2 \|\nabla c_{\alpha,N}^\varepsilon(\Omega_{\varepsilon})\|_{L^2(\Omega_{\varepsilon})}^2 + C_3 \left[1 + \|c_{\alpha,N}^\varepsilon(\Omega_{\varepsilon})\|_{L^p(\Omega_{f,T})}^p\right] \|\nabla c_{\alpha,N}^\varepsilon(\Omega_{\varepsilon})\|_{L^2(\Omega_{\varepsilon})}^2.$$

The boundary integral can be estimated in the same way as in (112):

$$\int_0^s \left[1 + \|c_{\alpha,N}^\varepsilon(\Omega_{\varepsilon})\|_{L^p(\Omega_{f,T})}^p\right] \|c_{f,N}^\varepsilon\|_{L^{p-1}(\Omega_{f,T})} \leq \delta_1 \sup_{(0,s)} \|c_{\alpha,N}^\varepsilon(s)\|_{L^p(\Omega_{\varepsilon})}^p + \delta_2 \|\nabla c_{\alpha,N}^\varepsilon(\Omega_{\varepsilon})\|_{L^2(\Omega_{\varepsilon})}^2 + C(\varepsilon) \left[1 + \|c_{f,N}^\varepsilon\|_{L^\infty(0,s;L^2(\Omega_{\varepsilon}))}^3\right] \|\nabla c_{f,N}^\varepsilon(\Omega_{\varepsilon})\|_{L^2(\Omega_{\varepsilon})}^3.$$

Considering $p = 3, \ldots, 6$ iteratively, using estimates (27), and making the calculations similar to those for b_α yields

$$\|c_{\alpha,N}^\varepsilon\|_{L^\infty(0,T;L^2(\Omega_{\varepsilon}))} + \|c_{f,N}^\varepsilon(s)\|_{L^\infty(0,T;L^6(\Omega_{\varepsilon}))} + \|\nabla c_{\alpha,N}^\varepsilon\|_{L^2(\Omega_{\varepsilon})}^3 + \|\nabla c_{f,N}^\varepsilon\|_{L^2(\Omega_{\varepsilon})}^3 \leq C,$$

where the constant C depends on p and ε and is independent of N. Letting $N \to \infty$, we obtain that $(c_{j,N}^\varepsilon)^{p-1} \in L^2(0,T;H^1(\Omega_{j,T}))$ with $j = e,f$ and $p = 3, \ldots, 6$. Thus we
can consider \((c_e^\varepsilon)^{p-1}\) and \((c_f^\varepsilon)^{p-1}\), with \(p = 3, 4\), as test functions in (11):

\[
\begin{align*}
|c_e^\varepsilon|_{L^p((\Omega_\varepsilon^s)')} + |c_f^\varepsilon|_{L^p((\Omega_\varepsilon^s)'')} + |\nabla |c_e^\varepsilon||_2^2 + |\nabla |c_f^\varepsilon||_2^2 &
\leq |c_e^\varepsilon(0)|_{L^p((\Omega_\varepsilon^s)')} + |c_f^\varepsilon(0)|_{L^p((\Omega_\varepsilon^s)'')} + C_1 \left[1 + \|G(\partial_t u_f^{\varepsilon})\|_2^2 \right] \|c_f^\varepsilon\|_{L^p((\Omega_\varepsilon^s)'')} \\
+ C_2 |e(u_c^\varepsilon)|_{L^\infty(0, \varepsilon; L^2((\Omega_\varepsilon^s)''))} \left[\|b_c^\varepsilon||_2^2 + \|c_e^\varepsilon||_2^2 \right] \|c_f^\varepsilon\|_{L^p((\Omega_\varepsilon^s)'')} \\
+ C_3 \left[1 + \|b_c^\varepsilon||_{L^p((\Omega_\varepsilon^s)'')} + \|c_e^\varepsilon||_{L^p((\Omega_\varepsilon^s)'')} + \|c_f^\varepsilon||_{L^p((\Omega_\varepsilon^s)'')} \right].
\end{align*}
\]

In the same way as in (115), applying the Gagliardo–Nirenberg inequality to \(|c_f^\varepsilon||_2^2\) in \(L^2((\Omega_\varepsilon^s)'')\) and \(L^4((\Omega_\varepsilon^s)'')\) and using properties of the extension of \(c_e^\varepsilon\) from \(\Omega_\varepsilon^s\) to \(\Omega\) and of \(c_f^\varepsilon\) from \(\tilde{\Omega}_{e_f}\) to \(\Omega\), we obtain

\[
\|c_e^\varepsilon\|_{L^\infty((0, T; L^2((\Omega_\varepsilon^s)''))} + \|c_f^\varepsilon\|_{L^\infty((0, T; L^4((\Omega_\varepsilon^s)''))} + \|\nabla |c_e^\varepsilon||_2^2 \|_{L^2((\Omega_\varepsilon^s)'')} + \|\nabla |c_f^\varepsilon||_2^2 \|_{L^2((\Omega_\varepsilon^s)'')} \leq \left(1 + \|c_f^\varepsilon\|_{L^p((\Omega_\varepsilon^s)'')} \right),
\]

where the constant \(C\) is independent of \(\varepsilon\).

Next we present the proof of the estimate for \(\|\tilde{b}_s^{c, j}\|_{L^\infty((0, s; L^\infty(\Omega))}\)

Lemma 10.2. For the difference of two iterations \(\tilde{b}_s^{c, j} = b_s^{c, j} - b_s^{c, j-1}\), \(\tilde{u}_s^{c, j-1} = u_s^{c, j-2} - u_s^{c, j-1}\), and \(\partial_t \tilde{u}_s^{c, j-1} = \partial_t u_s^{c, j-2} - \partial_t u_s^{c, j-1}\) for the microscopic system (6)–(8), defined in Theorem 3.3, we have

\[
\|\tilde{b}_s^{c, j}\|_{L^\infty((0, s; L^2(\Omega)))} \leq C\|\varepsilon(u_c^{\varepsilon,j-1})\|_{L^8((0, s; L^2(\Omega)))} + C_\delta \|\partial_t \varepsilon(u_c^{\varepsilon,j-1})\|_{L^8(\Omega)} + \delta \|\varepsilon(u_c^{\varepsilon,j-1})\|_{L^2(\Omega)},
\]

for \(s \in (0, T)\), any \(\delta > 0\), and \(0 < \sigma < 1/9\), where the constants \(C\) and \(C_\delta\) are independent of \(s\) and \(j\).

Proof. Considering \((\tilde{b}_s^{c, j})^{p-1}\) as a test function in the weak formulation of (31) yields

\[
\begin{align*}
&\frac{1}{p} \|\tilde{b}_s^{c, j}(s)\|_{L^p(\Omega)} + \frac{2(p-1)}{p^2} \|\nabla |\tilde{b}_s^{c, j}||_2^2 \|_{L^2(\Omega_\varepsilon^s)} \leq C_1 \|\tilde{b}_s^{c, j}\|_{L^p(\Omega_\varepsilon^s)} \\
&+ C_2 \|e(u_c^{\varepsilon,j})\|_{L^\infty((0, s; L^2(\Omega)))} + \|e(u_c^{\varepsilon,j-1})\|_{L^\infty((0, s; L^2(\Omega)))} \|\tilde{b}_s^{c, j}||_2^2 \|_{L^2(\Omega_\varepsilon^s)} \\
&+ C_3 \|b_s^{c, j-1}\|_{L^\infty(\Omega_\varepsilon^s)} \left[\frac{1}{p} \|\varepsilon(u_c^{\varepsilon,j-1})\|_{L^p((0, s; L^2(\Omega)))} \right] \|\tilde{b}_s^{c, j}||_2^2 \|_{L^2(\Omega_\varepsilon^s)} \\
&+ C_4 \|b_s^{c, j-1}\|_{L^\infty(\Omega_\varepsilon^s)} \|\varepsilon(u_c^{\varepsilon,j-1})||_{\Omega_\varepsilon^s} \|\tilde{b}_s^{c, j}||_{L^p(\Omega)} \|_{L^p(\Omega_\varepsilon^s)} \\
\end{align*}
\]

for \(s \in (0, T)\). Applying the Hölder inequality, we estimate

\[
\|e(u_c^{\varepsilon,j-1})||_{\Omega_\varepsilon^s} \leq \int_0^s \|e(u_c^{\varepsilon,j-1})||_{\Omega_\varepsilon^s} \left(\int_0^s \|\tilde{b}_s^{c, j}||_{L^p(\Omega_\varepsilon^s)} \right. \left. \|\tilde{b}_s^{c, j}||_{L^p(\Omega_\varepsilon^s)} \right) dt
\]

\[
\leq C_1 \int_0^s \|e(u_c^{\varepsilon,j-1})||_{\Omega_\varepsilon^s} \|\tilde{b}_s^{c, j}||_{L^p(\Omega_\varepsilon^s)} \|\tilde{b}_s^{c, j}||_{L^p(\Omega_\varepsilon^s)} dt
\]

\[
\leq C_2 \left(\int_0^s \|e(u_c^{\varepsilon,j-1})||_{\Omega_\varepsilon^s} \|\tilde{b}_s^{c, j}||_{L^p(\Omega_\varepsilon^s)} dt \right) \left(\int_0^s \|\tilde{b}_s^{c, j}||_{L^p(\Omega_\varepsilon^s)} dt \right) \left(\int_0^s \|\tilde{b}_s^{c, j}||_{L^p(\Omega_\varepsilon^s)} dt \right)
\]

for some \(\sigma > 0\). Applying the Gagliardo–Nirenberg inequality

\[
\|w||_{L^\alpha(\Omega)} \leq C\|\nabla w||_{L^2(\Omega)} \|w||_{L^2(\Omega)}^{\alpha-\sigma}
\]
with $\alpha = \frac{\sigma}{10}$, we obtain for $0 < \sigma < 1/9$

$$
\left(\int_0^s \| \tilde{b}_e^{\sigma,j} \|^2 \| \tilde{f}_e^{\sigma,j} \|^2 \| \tilde{b}_e^{\sigma,j} \|^2 \| \tilde{f}_e^{\sigma,j} \|^2 \right)^{\frac{1}{1+\sigma}} \leq C \left(\int_0^s \| \nabla \tilde{b}_e^{\sigma,j} \|^2 \| \tilde{f}_e^{\sigma,j} \|^2 \| \tilde{b}_e^{\sigma,j} \|^2 \| \tilde{f}_e^{\sigma,j} \|^2 \right)^{\frac{1}{1+\sigma}}
$$

$$
\leq C_2 \| \nabla \tilde{b}_e^{\sigma,j} \|^2 \| \tilde{f}_e^{\sigma,j} \|^2 \| \tilde{b}_e^{\sigma,j} \|^2 \| \tilde{f}_e^{\sigma,j} \|^2 \left(\int_0^s \| \tilde{b}_e^{\sigma,j} \|^2 \| \tilde{f}_e^{\sigma,j} \|^2 \| \tilde{b}_e^{\sigma,j} \|^2 \| \tilde{f}_e^{\sigma,j} \|^2 \right)^{\frac{1}{1+\sigma}}
$$

$$
\leq \frac{\delta}{p} \| \nabla \tilde{b}_e^{\sigma,j} \|^2 \| \tilde{f}_e^{\sigma,j} \|^2 \| \tilde{b}_e^{\sigma,j} \|^2 \| \tilde{f}_e^{\sigma,j} \|^2 + C_{\delta} p \frac{\tilde{c}}{p} \| \tilde{b}_e^{\sigma,j} \|^2 \| \tilde{f}_e^{\sigma,j} \|^2 \| \tilde{b}_e^{\sigma,j} \|^2 \| \tilde{f}_e^{\sigma,j} \|^2
$$

(118)

for any $\delta > 0$. Hence we have the following estimate:

$$
\langle \mathbf{e}(\tilde{u}_e^{\sigma,j-1}), \tilde{b}_e^{\sigma,j} \rangle_{L^p(\Omega_e)} \leq \frac{\delta p - 1}{p^2} \| \nabla \tilde{b}_e^{\sigma,j} \|^2 \| \tilde{f}_e^{\sigma,j} \|^2 \| \tilde{b}_e^{\sigma,j} \|^2 \| \tilde{f}_e^{\sigma,j} \|^2 + C_{\delta} p \frac{\tilde{c}}{p} \| \mathbf{e}(\tilde{u}_e^{\sigma,j-1}) \|^p \| \tilde{b}_e^{\sigma,j} \|^p \| \tilde{f}_e^{\sigma,j} \|^p \| \tilde{b}_e^{\sigma,j} \|^p \| \tilde{f}_e^{\sigma,j} \|^p,
$$

(119)

with $\beta = \frac{\sigma}{10}$. We incorporate inequality (119) in (116), estimate $\| \tilde{b}_e^{\sigma,j} \|^p_{L^p(\Omega_e)}$ and $\| \tilde{b}_e^{\sigma,j} \|^2_{L^2(\Omega_e)}$ in terms of $\| \tilde{b}_e^{\sigma,j} \|^2_{L^2(\Omega_e)}$ and $\| \nabla \tilde{b}_e^{\sigma,j} \|^2_{L^2(\Omega_e)}$ by applying the Gagliardo–Nirenberg inequality, and then use the estimate (35) for $\| \tilde{b}_e^{\sigma,j} \|^p_{L^p(\Omega_e)}$ and the boundedness of $\tilde{b}_e^{\sigma,j-1}$, which can be shown in the same way as the L^1-estimates in (106), to obtain

$$
\| \tilde{b}_e^{\sigma,j} \|^p_{L^p(\Omega_e)} + \| \nabla \tilde{b}_e^{\sigma,j} \|^2_{L^2(\Omega_e)}
$$

$$
\leq C_{\delta} p \| \mathbf{e}(\tilde{u}_e^{\sigma,j-1}) \|^p \| \tilde{b}_e^{\sigma,j} \|^p \| \tilde{f}_e^{\sigma,j} \|^p \| \tilde{b}_e^{\sigma,j} \|^p \| \tilde{f}_e^{\sigma,j} \|^p
$$

(120)

Using (35) and iterating in $p = 2^k$ for $k = 2, 3, \ldots$, similarly to [2, Lemma 3.2], we obtain the estimate stated in the lemma.

REFERENCES

HOMOGENIZATION OF BIOMECHANICAL MODELS

© 2017 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license