Global proteomic- and transcriptomic analyses of starvation responses reveal a central role for lipoprotein metabolism in acute starvation survival in C. elegans

Eva Bang Harvalda, Richard R. Sprengera, Kathrine Brændgaard Dalla, Christer S. Ejsinga, Ronni Nielsena, Susanne Mandrupa, Anton Gartnerb, Angus I. Lamondb, Nils J. Færgemana§

aVillum Center for Bioanalytical Sciences, Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark

bCentre for Gene Regulation and Expression, College of Life Science, University of Dundee, Dow St, Dundee, United Kingdom, DD15EH

§Lead contact: Nils J. Færgeman, Villum Center for Bioanalytical Sciences, Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark, Tel. +45 6550 2453; Fax. +45 6550 2467; E-mail: nils.f@bmb.sdu.dk

\textbf{Keywords:} C. elegans, starvation, HLH-30, proteomics, transcriptomics, RNA-seq, vitellogenins, lipid droplets

Abbreviations:

ATG, AuTophagy Gene; CARS, Coherent Anti-stokes Raman Scattering; GO term, Gene Ontology term; KEGG, Kyoto Encyclopedia of Genes and Genomes; LC-MS, Liquid Chromatography-Mass Spectrometry; MS, Mass Spectrometry; NGM, Nematode Growth Media; RNA-seq, RNA-sequencing; SILAC, Stable Isotope Labeling by Amino acids in Cell culture

© 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
SUMMARY

Despite the fact that mild starvation is known to have beneficial effects on organisms ranging from yeast to primates, the molecular mechanisms underlying the physiological and cellular response to starvation have by far been fully resolved. In the present study we have used 2D-LC-MS label-free quantitative proteomics and RNA-seq to examine the temporal responses to starvation in the multicellular organism C. elegans in both wild type animals and hlh-30 mutants. HLH-30, a homolog of the mammalian transcription factor TFEB, is known to serve important functions in the response and adaptation to starvation. Our proteomic analysis identified more than 4,500 proteins at each of the seven time points examined in both wild type and hlh-30 mutant animals with nearly complete data coverage. By RNA-seq analysis we identified close to ~41,000 annotated RNAs of which more than 20,000 encode a protein product. We found that protein abundance shows a moderate correlation with the abundance of the corresponding mRNAs throughout the starvation period, underlining that protein levels are not predominantly regulated by transcriptional mechanisms. Our findings show that starvation alters the abundance of hundreds of mRNAs and proteins in a temporal manner, which are involved in central metabolic pathways including lipoprotein metabolism. Interestingly, we find that hlh-30 animals die prematurely under starving condition, which can prevented by knock down of vit-1 and vit-5, encoding specific lipoproteins involved in transport of lipids and other nutrients from the intestine to the oocyte. We also show that the size and number of intestinal lipid droplets are altered in hlh-30 animals, which is normalized by knock down of vit-1 and vit-5, collectively indicating that the improved survival under starvation conditions is closely linked to the size and number of the intestinal lipid droplets. We conclude that our present study provides an extensive and important resource for further functional studies of starvation responses in C. elegans.
INTRODUCTION

A fundamental challenge for all living organisms is to sense and respond to nutrient-derived signals in order to adapt their metabolism and physiology to promote survival and achieve balanced growth. Accordingly, evolution has shaped the ability of organisms to regulate its metabolism in response to nutrient availability. Thus, by coordinating catabolic as well as anabolic pathways, organisms from yeast and bacteria to humans are capable of survival with extended minimum energy intake. Interestingly, several studies have shown that either reduced caloric intake or fasting periods without malnutrition, can have numerous beneficial effects including enhanced cognitive functions and improved immune responses, reduced risk of developing metabolic and neurodegenerative diseases, and even improved treatment of certain types of cancers (reviewed in (Longo and Mattson, 2014)). During the past decades many studies have uncovered mechanisms governing regulation and adaptation to starvation, including controlled depletion of energy stores to sustain a nutrient limited environment. In particular, lipolysis (Narbonne and Roy, 2009; O’Rourke and Ruvkun, 2013), lipophagy (reviewed in (Liu and Czaja, 2013)) and subsequently breakdown of fatty acids through β-oxidation (Elle et al., 2012; Settembre et al., 2013) have been shown to be important for survival during starvation.

The helix-loop-helix transcription factor HLH-30 in C. elegans and its mammalian orthologue, TFEB, have previously been shown to serve a central role in starvation responses by coordinating the induction of genes involved in autophagosome formation, lysosomal functions, and fatty acid degradation, thus preventing accumulation of potentially harmful intermediates (Cuervo, 2013; Lapierre et al., 2013; O’Rourke and Ruvkun, 2013; Pena-Llopis et al., 2011). Accordingly, impaired HLH-30 function does not affect lifespan under normal conditions, but compromises the long-lived phenotype of multiple C. elegans mutants including eat-2 (dietary restriction), glp-1 (impaired fertility), daf-2 (insulin signaling), clk-1 (respiration), rsks-1 (translation), mlx-3 (increased lipid degradation), and the RNAi depletion of the TOR orthologue let-363 (Lapierre et al., 2013). Moreover, hlh-30 mutants die prematurely during starvation (O’Rourke and Ruvkun, 2013),
underlining the importance of HLH-30 for the physiological response to starvation. Additionally, HLH-30 is also required for antimicrobial responses (Visvikis et al., 2014). Collectively, these studies show that HLH-30 serves multiple functions and imply that it may also control still unrevealed pathways.

Despite the previous studies, the underlying mechanisms regulating the delicate balance between energy consumption and energy storage have not been fully investigated and our current knowledge is limited by a prevalent focus on single pathways such as lipid catabolism (O'Rourke and Ruvkun, 2013), autophagy (Kang et al., 2007), and translation (Hansen et al., 2007) rather than a systematic, global analysis of how all pathways are wired and interconnected. While control of starvation has been studied in details at a genetic level, relatively little is known about how the proteome change in response to starvation. Recent developments in quantitative proteomics in C. elegans have provided further opportunities to systematically examine proteomic changes in response to environmental and genetic changes (Fredens et al., 2011; Larance et al., 2011) and aging (Dong et al., 2007; Liang et al., 2014; Narayan et al., 2016; Walther et al., 2015; Zimmerman et al., 2015). Importantly, these and other studies have also revealed that there is only a modest correlation between mRNA and proteins levels (Grun et al., 2014; Walther et al., 2015) elevating the importance of determining information on both levels of regulation in a concerted study.

Recently, using a stable isotope labeling by amino acids in cell culture (SILAC) based proteomics Larance et al. comprehensively identified proteome-wide changes in response to starvation that included changes in proteins involved in chromatin organization, cell cycle, locomotion, life span and key metabolic pathways such as fatty acid degradation (Larance et al., 2015). In the present study we have used label-free quantitative proteomics in combination with RNA-sequencing (RNA-seq) to further disentangle starvation responses in a temporal manner with high resolution at the proteomic as well as at the transcriptomic level. We find only a moderate, and in some cases an inverse, correlation between mRNA and protein levels, arguing that not only transcriptional but also substantial posttranslational mechanisms contribute to the starvation
response. Furthermore, we show that the transcription factor HLH-30 serves key functions in the response and adaptation to starvation for example by modulating intestinal lipid transport and the expression of lipoproteins. Compared with other datasets, the present study provides comprehensive information about absolute gene and mRNA abundances and thus constitutes an important resource that allows detailed quantitative analyses of starvation responses. In support of open access data sharing all of the raw MS data from this study have been deposited to the ProteomeXchange Consortium 5 (http://proteomecentral.proteomexchange.org) via the MassIVE partner repository. Moreover, the processed proteomic data can be accessed in a searchable, online database (https://www.peptracker.com/epd/).

RESULTS

A systematic label-free quantitative proteome analysis of C. elegans charts the temporal starvation response

To further identify the molecular mechanisms governing the response and adaptation to starvation we aimed at uncovering proteomic changes in response to acute starvation using C. elegans as model organism. We therefore analyzed the temporal response to starvation across a 1 hour to 16 hours food deprivation time course (Figure 1A). We analyzed more time points within the first 6 hours to delineate early starvation responses with high resolution but also analyzed the response at 16 hours of food deprivation, where starvation induced changes in protein abundance reach their maximum (Larance et al., 2015). To complement the proteomic analyses we also examined the molecular responses to starvation at a transcriptional level by RNA-seq. Furthermore, in addition to studying wild type animals, we also analyzed the temporal starvation response in animals lacking the helix-loop-helix transcription factor HLH-30, which was previously shown to play important roles in adaptation to starvation (O'Rourke and Ruvkun, 2013). Thus, we starved worms from the mid-L4 stage by transferring a population of developmentally synchronous worms to unseeded NGM plates and sampled animals for proteomics and transcriptomic analyses after 1,
2, 3, 4, 6, and 16 hours. Since acute starvation of mid-L4 animals results in L4 arrest (Angelo and Van Gilst, 2009) we used fed mid-L4 animals as a point of reference. We harvested animals in biological triplicates for each condition and divided them into two identical pools, which were subjected to label-free MS-based proteomics and mRNA-seq based transcriptomics.

Using a two dimensional liquid chromatography-mass spectrometry (2D-LC-MS) label-free quantitative proteomic approach we identified 32,844 distinct peptides with a false discovery rate (FDR) of 1 %, distributed among ~4,580 proteins depending on the time point, and of these, at least two peptides were detected for 3,786 proteins. Across a total of 42 samples, we obtained a data completeness of 99.4%. The dynamic range of absolute protein abundance across all proteins was ~8 orders of magnitude, from approximately 10^{-5} fmol/ug to 1,400 fmol/ug (Figure S1). Among the most abundant proteins, we observed elongation factors including elongation factor 1-alpha (EFT-3) and elongation factor 2 (EEF-2) as well as several ribosomal subunits including 60S acidic ribosomal protein P1 (RLA-1), P2 (RPA-2), and 40S ribosomal protein SA (RPS-0) (data not shown).

We evaluated biological reproducibility by comparing the three biological replicates individually by Pearson correlation analyses for all time points (Figures S2A and S2B). We found high reproducibility between samples harvested at the same time point (R>0.94, Pearson), and that the correlation was higher at early time points of starvation compared with the latest time point (16 hours). As shown in the Venn diagrams more than 99% of proteins were identified in all three replicates of each condition (Figure 1B). Protein density and volcano plots show that the proteome changes substantially after 4, 6, and 16 hours of starvation in both wild type and hlh-30 animals (Figure 1C and Figure 1D). To corroborate these data we assessed the level of proteins previously reported regulated by starvation (Larance et al., 2015; O'Rourke and Ruvkun, 2013; Settembre et al., 2013). Consistently, we observed that proteins involved in autophagy including ATG-18, ATG-4.1, EPG-6, and LGG-1 were up-regulated in wild type animals in response to 16 hours of starvation, whereas a number of key anabolic genes involved in fatty acid biosynthesis, including
POD-2 and FASN-1, encoding acetyl-CoA carboxylase and fatty acid synthase, respectively, as well as fatty acid desaturases (FAT-1 and FAT-4) were significantly down-regulated (Figure S3).

Acute starvation induces global metabolic changes in C. elegans

To systematically assess starvation-induced changes and identify groups of proteins that show a similar abundance profile during starvation, we subjected the proteomic datasets to hierarchical clustering based on Ward’ minimum variance method (Murtagh and Legendre, 2014), visualized in a heat map (Figure 2A). To remove background noise, we filtered the data for proteins that had a q-value below 0.05 relative to fed wild type (t = 0 hours), in at least one time point, which reduced the data set to 1,780 proteins. To minimize redundancy in clustering due to large differences in abundances, the log₂ protein ratios with respect to time point zero (fed) were scaled. This identified 4 distinct abundance profiles (Figure 2). Cluster I comprises proteins, that increase over time, reaching a high level after 16 hours; cluster II comprises proteins, that gradually increase in abundance over time; cluster III comprises proteins that continuously decrease in abundance that declines substantially after 16 hours; finally cluster IV comprises proteins that gradually decrease in abundance over time (Figure 2A).

Using DAVID (version 6.8 Beta) (Huang da et al., 2009a, b) we identified the enriched KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways within each cluster (Figure 2B). Among the KEGG pathways enriched in cluster I we identified several catabolic pathways, which, expectedly, were up-regulated during starvation including “peroxisome”, “lysosome”, and “fatty acid degradation”. Clusters I and II also contain several autophagy related proteins including LGG-1, DAF-15, EPG-6, ATG-18 and SQST-2 (Figure 2A). Interestingly, we found the two negative regulators of autophagy, i.e. TOR ortholog LET-363 and the DAP-1 ortholog, T28F4.5, were both contained in cluster II, indicating that degradation processes must be kept in check by inhibition during prolonged starvation. We also found that pathways including “spliceosome”, “RNA polymerase”, and “RNA transport” were enriched among the proteins contained in both cluster I
and II. Collectively, these data indicates that catabolic energy-producing pathways are up-regulated, and that extensive rewiring of translation and RNA processing occurs in response to starvation. We found among the enriched KEGG pathways in cluster III “protein processing in endoplasmic reticulum”, “protein export”, “ribosome”, “biosynthesis of amino acids” and in general metabolism of amino acids. Interestingly, a recent study identified several ribosomal subunits down-regulated at the protein level in DR animals (Depuydt et al., 2013). We observe the tRNA synthetases CARS-1, WARS-1, RARS-1, and FARS-1 in clusters III and IV (Figure 2A). In cluster III we found “pentose phosphate pathway” enriched, which provides building blocks for RNA and DNA synthesis as well as the reducing redox equivalent NADPH for biosynthetic purposes including de novo fatty acid synthesis. Accordingly, although not enriched in specific KEGG pathways, we found several proteins involved in fatty acid synthesis, desaturation and elongation and phospholipid synthesis in cluster III and IV, including POD-2, FASN-1, SAMS-1, ELO-1, ELO-5, FAT-4, and FAT-6.

By subjecting the most up- and down-regulated (>2 fold, q-value < 0.05) proteins at each time point to Gene Ontology (GO) term enrichment analysis by DAVID (version 6.8 Beta) we also found that specific GO terms including “fatty acid metabolism” and “regulation of autophagy”, were consistently enriched among the up-regulated proteins (Figure S4A), while GO terms related to numerous biosynthetic pathways were enriched among the down-regulated proteins beginning already at 2 hours of starvation (Figure S4B). Interestingly, the GO terms “negative regulation of proteolysis” was also enriched among the up-regulated proteins. This GO term comprise several serpins including SRP-2, -6, and -7, which are predicted to function as suicide substrates that inhibit the proteolytic activity of serine proteases (Pak et al., 2004). This suggests that proteolytic processes are kept in control during starvation by increasing the abundance of competitive substrates. In contrast with the KEGG pathway analysis, GO term enrichment analyses also revealed that GO terms including “metabolic process”, “immune system process” and “innate immune response”, were enriched among the down-regulated proteins (Figures S4B). These
proteins include UDP-glucuronosyl transferases (UGT-16, -21, -25, -41, -45, -57, -61), cytochrome P450 protein family members (CYP-25A2, -35A2, -35A3, -35C1), transcriptional regulators, and antimicrobial peptides, which all are involved in host immune responses (Simonsen et al., 2012). Collectively, these observations suggest a reduced investment in energy consuming pathways that do not contribute directly to survival of starvation including immune response pathways. As expected, we found that catabolic processes including fatty acid degradation, proteolysis and autophagy are induced, albeit not until several hours after initiation of starvation, while anabolic pathways and translation are dampened upon starvation.

Starvation induces profound transcriptional changes

To complement the proteomics analyses we employed RNA-seq to examine the transcriptional response to starvation. Analyzing the same populations of worms, we identified a total of 40,942 annotated RNAs encoding 20,381 proteins. The fraction of mRNA encoding protein detected from each of the 6 chromosomes closely matched previously published data (Consortium, 1998) (Figure S5). The numbers of protein-encoding RNAs identified in the triplicate samples at each time point are high (Figures 3A). Volcano plots indicated that the majority of the mRNAs increased in response to starvation in both wild type and in *hlh-30* animals (Figures 3B). Consistently, we found markedly more up-regulated than down-regulated RNAs, while in contrast the number of proteins that are up- and down-regulated is similar (Figure S6).

The 20,381 protein encoding mRNAs were matched to 18,966 corresponding UniProt accession numbers using the DAVID Gene ID Conversion Tool (Huang da et al., 2009a, b) (Table S1). We found a total overlap of 3,083 IDs, which were identified by both RNA-seq and proteomics. Furthermore, in accordance with previous reports (Azimifar et al., 2014; Grun et al., 2014; Ly et al., 2014; Maier et al., 2011; Vogel and Marcotte, 2012), we found that the Pearson correlation coefficient between mRNA and the corresponding protein (Figure 3C) was positive but moderate, ranging from 0.546 to 0.609 at different time points. Interestingly, we observed that the
abundances of some proteins correlated inversely with the abundance of their corresponding mRNA e.g. fatty acid desaturases (Figure S7). Thus, since it is level and activity of each protein in a proteome that define cellular and organismal phenotypes, these observations emphasizes the importance of not solely relying on mRNA data to infer protein levels, but to actually determine protein levels to understand phenotypic changes.

Hierarchical clustering of the 3,083 IDs shared between the mRNA and protein datasets using correlation distances for distance metric and Ward’s minimum variance method, revealed 4 separate abundance profiles (Figure 4A). This further illustrates the inverse correlation between the abundances of some proteins and their corresponding mRNAs (Figure 4A). This analysis combined information for all proteins matched with their corresponding mRNAs as log$_2$ ratios, with respect to fed animals (t = 0). Cluster I represents a group of proteins showing little or no decrease in abundance, whereas the abundance of their corresponding mRNAs shows a pronounced reduction during the course of starvation. Cluster II represents proteins that increase in abundance during starvation, with little or no increase in the corresponding mRNAs. Cluster III represents proteins that show a general and consistent decrease in abundance throughout starvation, whereas the corresponding mRNAs show a slight, but consistent increase, with a sub-cluster that peaks after 2 hours. Finally, cluster IV contains proteins showing minimal change in abundance, whereas the corresponding mRNAs show a consistent increase throughout starvation.

From these data it is obvious that the abundance levels of numerous proteins that we have identified are regulated differently than the corresponding mRNAs. Specifically, a subset of protein groups and corresponding mRNAs were identified that respond differently to starvation, rather than general trend throughout the entire proteome and transcriptome. This prompted us to examine the 4 clusters further. Thus we subjected the proteins in each cluster to KEGG pathway enrichment analyses, using DAVID as described above (Figure 4B). Among the enriched KEGG pathways in cluster I we identified several catabolic pathways including “Proteasome”, “Oxidative phosphorylation” and “Citrate cycle (TCA cycle)”, but also anabolic pathways including “Fatty acid
elongation” and “Ribosome”. This suggests that the abundance of proteins involved in these pathways is less affected by starvation, while the abundance of the corresponding RNA is down-regulated. Cluster II comprises pathways also contained in cluster I of the proteome heat map (Figure 2A), including the catabolic pathways “Lysosome” and “Fatty acid degradation”.

Cluster III, like clusters I and II of the proteome heat map (Figure 2A), contains several mRNA processing related pathways such as “Spliceosome” and “mRNA surveillance pathway”. However, in contrast with the clusters discussed above (I and II, Figure 2A), the abundance of proteins in cluster III decrease with time of starvation, whereas the corresponding mRNA levels are slightly increasing during starvation and stabilizing after 16 hours. Altogether, these observations suggest a complex pattern, involving both upregulation and downregulation of abundance levels for different proteins involved in RNA processing with the latter group of proteins also showing increased mRNA levels. Interestingly, the KEGG pathway “Ribosome biogenesis in eukaryotes” is enriched in both clusters III and IV, which indicates that the organism responds to starvation by reducing translation at the protein level while continuously transcribing the corresponding mRNA. A possible reason for this could be to potentially allow a fast response to growth when nutrient availability increases again post starvation. These observations are in line with previous studies in dietary restricted animals (Depuydt et al., 2013). Cluster IV contains KEGG pathways related to both catabolic (including “Fatty acid degradation” and “Peroxisome”) and anabolic (including “Biosynthesis of amino acids” and “One carbon pool by folate”) functions, again implying that the organism is preparing for the potential return of nutrients by transcription of genes involved in these pathways without the subsequent translation resulting in a steady level of the corresponding proteins. Strikingly, cluster IV also comprises the fatty acid desaturases fat-1, 2, 4 and -6 whose mRNA increase in response to starvation as previously reported (Settembre et al., 2013), while we observe that the abundance of the corresponding proteins decrease (Figure S7). Interestingly, the pathways “Endocytosis” and “SNARE interactions in vesicular transport” are also contained in
cluster IV, suggesting that also the potential uptake of nutrients by endocytosis is up-regulated at the transcriptional level while showing little or no changed at the protein abundance level.

Despite the moderate correlation observed between protein and mRNA abundance, analysis of transcriptional responses can still illuminate valuable phenotypic information showing how an organism responds to starvation, and also serves as a valuable indicator for future studies. Hence, we subjected the significantly up- or down-regulated transcripts (significance in this case being defined as q-value < 0.05, > 2-fold change) found at each time point relative to fed wild type levels (t = 0) to GO term enrichment analysis using DAVID (version 6.8 Beta) as for the proteomics data above. As expected, the number of enriched GO terms increases over time; however, while GO terms among the up-regulated RNAs are enriched already after 1 hour, we do not observe enriched GO terms among the down-regulated RNAs until 3 hours post starvation onset (Figure S8A and Figure S8B).

Interestingly, GO terms describing defense responses involving responses to either a bacterial or biotic stimulus, were highly enriched among the up-regulated RNAs, while GO terms relating to innate immune responses were among the down-regulated RNAs (Figure S8A and Figure S8B). Although less prominent, we also identify the GO term “cellular response to stimulus” to be significantly enriched among the up-regulated genes, which interestingly, included 15 members of nuclear hormone receptor (NHR) family. Such massive induction of NHRs during food deprivation suggests that they play an important role in the transcriptional response to starvation. Consistent with this idea, it has recently been shown that ~10% of the 293 NHR encoding genes are up-regulated upon starvation and down-regulated upon subsequent re-feeding at the transcriptional level (Hyun et al., 2016). Accordingly, despite that we did not detect nhr-45 and nhr-49 at the mRNA level, we identified both of them to be up-regulated at the protein level. Both NHR-45 and NHR-49 have previously been found to be involved in starvation responses (Arda et al., 2010; Van Gilst et al., 2005). In support of this notion, GO terms “lipid metabolic process” and “fatty acid metabolic process”, which include putative NHR-49 target genes, e.g. acs-2, acdh-6, the FAXDC2
ortholog f49e12.10, and 3-hydroxyacyl-CoA dehydrogenase f21c10.10 were also enriched among the significantly up-regulated mRNAs after 16 hours of starvation.

Functional loss of HLH-30 induces global proteomic changes

The transcription factor HLH-30 and its mammalian ortholog TFEB have previously been shown to serve crucial functions during starvation, dietary restriction and autophagy in both C. elegans and in mammals (Lapière et al., 2013; Magini et al., 2013; O’Rourke and Ruvkun, 2013; Pena-Llopis et al., 2011; Rocziak-Ferguson et al., 2012; Settembre et al., 2013; Wang et al., 2015). However, most of these analyses have been performed at a genomic level and not at a proteomic level per se. Thus, we examined the role of the C. elegans orthologue of the transcription factor HLH-30 during starvation. Based on our proteomics data, we sought to identify proteins and pathways responding to starvation in the wild type population that showed an altered or lacking response in mutant animals. Since we were interested in the temporal response to starvation, we first chose to focus on effects persisting over time rather than considering changes in abundance only detected at isolated time points. To identify differences in how wild type animals and hlh-30 animals respond to starvation, we calculated a score based on the change in abundance over time and the difference in protein abundance between wild type and the hlh-30 mutant:

\[\text{Score} = (1 - |A|) \times B \]

where \(A \) is the Pearson correlation between the temporal response curves for a given protein over time between wild type and mutant, and \(B \) is the integrated numerical difference between the same curves. Thus, for a certain protein, whose abundance does not correlate over time between strains, \(A \) will tend to 0. To focus on proteins that had either a reduced or increased response to starvation in hlh-30 animals, we aimed at identifying proteins where \(A \) was close to 0. Since \(B \) describes the absolute area between the wild type and mutant over time, a high value of \(B \) suggests a large difference in abundance for a given protein between the two strains. To diminish the impact from a potential large difference in abundance between two specific proteins in the two populations, we
normalized protein levels of each time point and for both conditions with respect to protein levels in fed wild type animals at time point 0 and transformed them to log₂ ratios. Thus, the log₂ ratio is 0 at the first time point for the wild type, but may differ for *hlh-30* animals.

Based on the correlation and the absolute integrated area between the curves, we show four examples of known HLH-30 regulated genes, including the correlation and absolute integrated value (Figure S9A). To further corroborate this approach and to identify proteins regulated by starvation in an HLH-30-dependent and temporal manner, we therefore calculated and plotted the score of all identified proteins including known HLH-30 targets, e.g. ATG-18, LGG-1, CPR-1, VPS-18 and HLH-30 itself. Interestingly, these all had a score >1.03, which was above the 75th percentile of the score for all proteins (Figure S10A). However, we observed a fairly uniform distribution of the A component (Figure 5A), indicating that the correlation only slightly contributes to the total score. As we observed a large value for B for a number of proteins previously described as HLH-30 targets, we argue that it is the absolute abundance rather than temporal fluctuations at the protein level that is affected by the absence of HLH-30. Thus, by selecting proteins with a high B value, rather than a high total score (B value >1.85, 75th percentile, Figure S10B), we identified 1,109 proteins, which include targets whose expression has previously been shown to depend on HLH-30 (Figure 5 and Figure S9). By KEGG pathway enrichment analysis using DAVID (version 6.8 Beta), we functionally classified the 1,109 proteins to pathways that included “metabolic pathways” and cytochrome P450 pathways (Figure 5). Enriched GO terms were primarily associated to developmental and reproductive processes, possibly reflecting that loss of HLH-30 affects survival during starvation (O'Rourke and Ruvkun, 2013). We also noted that GO terms associated with defense mechanisms and innate immune response were enriched when a similar analysis was performed using RNA abundances instead of protein abundance (Figure 5D). Interestingly, comparing the GO terms which are enriched by using protein and RNA abundance, respectively, we noted that “lipid localization” was the only shared enriched GO term (Figure 5C
and Figure 5D). This GO-term included proteins such as, e.g. CCO-1, LPD-3, CCG-1, MDT-15, OBR-1 and VIT-1,-2,-3, and -4 (Table S1).

Vitellogeinins are required for acute starvation survival

Vitellogeinins are precursors of yolk proteins, synthesized in the intestine, secreted to the body cavity and taken up in the gonad were they accumulate in the oocytes (Blumenthal et al., 1984; Kimble and Sharrock, 1983). Vitellogeinins are known to increase with age (Liang et al., 2014) and have previously been linked to aging in *C. elegans* (Murphy et al., 2003; Seah et al., 2016), as well as in other organisms (Tetlak et al., 2015). Vitellogeinins play crucial roles in lipid transport and control trafficking of lipids, either for energy production in the starving hermaphrodite or for reproduction in the oocytes. Consistent with recent findings (Heestand et al., 2013; Seah et al., 2016), we also find that vitellogeinins are down-regulated after a few hours of starvation (Figure S11).

Since we find that the vitellogeinins show an inverse response to starvation in *hlh-30* as opposed to wild type animals and that HLH-30 is required for survival under starvation conditions (O’Rourke and Ruvkun, 2013), we asked if the vitellogeinins are required for survival in response to acute starvation. As previously reported (O’Rourke and Ruvkun, 2013), we also found that the *hlh-30* mutant dies prematurely under such conditions (Figure 6). Surprisingly, knock down of vit-1 and vit-5 rescued the short-lived phenotype of *hlh-30* animals in response to acute starvation, but had no effect on survival of wild type animals during starvation conditions (Figure 5). Interestingly, among the HLH-30 dependent proteins, we also identified SSQ-4 and UNC-41. Analogous to the vitellogeinins, we found both these proteins induce a similar phenotype when knocked down in *hlh-30* animals (Figure 6). Knowing that the vitellogeinins play important functions in lipid transport and storage prompted us to assess the distribution of intestinal lipid droplets in both wild-type and in *hlh-30* animals. Coherent Anti-stokes Raman Scattering (CARS) microscopy revealed that the size of intestinal lipid droplets in the wild type increased over time of starvation compared to fed
animals, while the number of droplets decreased during starvation (Figure 7), as previously shown in dietary restricted animals (Palgunow et al., 2012). When examining lipid droplets in hlh-30 animals during starvation we observed an opposite response (Figure 7). Interestingly, knock down of vit-1 in hlh-30 animals completely restored the size and number of lipid droplets, while having little or no effect in wild type animals. Altogether, our data indicate that nutrient levels balance the number and size of intestinal lipid droplets, which can be modulated by HLH-30 and vitellogenins.

In conclusion, the present study demonstrates how systems-wide analyses can provide functional insights into novel regulatory mechanisms controlling fundamental processes that links metabolism and survival in metazoans. It also emphasizes the importance of examining fundamental regulatory mechanisms by addressing protein abundances and not only formulate new models based on RNA abundances. We anticipate that the present in-depth resource will inspire and enable additional studies in starvation responses in metazoans.

DISCUSSION

In the present study we have applied 2D-LC-MS/MS label-free quantitative proteomics and RNA-seq to globally monitor temporal changes in protein- and mRNA levels in response to starvation in both wild type C. elegans and in animals lacking functional HLH-30, a homologue of the mammalian transcription factor TFEB. In each of three biological replicates (Figure 1A), we identified >4,500 proteins, with at least two peptides detected in ~3,800 proteins per time point and with >99% data coverage across all time points. Moreover, >99% of the identified proteins were detected and quantified in all three replicates at each time point. A recent study also examined the temporal response to starvation in C. elegans using SILAC-based proteomics and reported identification of ~5,500 proteins in all samples from both fed and starved animals, across all time points (Larance et al., 2015). Although we identify fewer proteins in the present study, our analyses provide measurement of absolute levels of each protein. Thus, we show that the absolute protein
abundance in all samples spans approximately 8 orders of magnitude ranging from approximately 10^{-5} fmol/ug to 1,400 fmol/ug.

Our present analyses provide a valuable, in-depth resource that identifies multiple physiological responses to starvation, including lipid- and amino acid metabolism, stress responses, and autophagy. Dynamic changes in protein abundances allow an organism to adapt its metabolism to nutritional and environmental changes, e.g. by down-regulating anabolic pathways and upregulating catabolic pathways. Consistent with previous findings and the notion that anabolic processes are suppressed in response to nutrient deprivation, we detect numerous proteins involved in de novo biosynthesis and desaturation of fatty acids that are down-regulated in response to starvation. This includes POD-2/ACC, the enzyme catalyzing the rate-limiting step in de novo fatty acid synthesis, fatty acid synthase FASN-1 and fatty acid desaturases like FAT-1, FAT-2, FAT-4, and FAT-6 (Larance et al., 2015; Pang et al., 2014). Moreover, the two long-chain acyl-CoA synthetases, ACS-1 and ACS-2, are involved in lipid biosynthetic and degradative pathways, respectively (Zhang et al., 2011; Zhang et al., 2013). Interestingly, we find that their abundance is down- and up-regulated, respectively, suggesting that metabolically active fatty acids are re-directed towards degradation.

In agreement with previous findings (Larance et al., 2015), we also find that a number of enzymes that metabolizes either short-, or medium chain, fatty acids are down-regulated during starvation, while the abundance of proteins involved in mitochondrial import of long-chain acyl-CoA esters (e.g. CPT-1), remains unchanged during starvation (Figure 4). Thus, we conclude that down-regulation of POD-2/ACC and consequently the synthesis of malonyl-CoA, a potent inhibitor of CPT-1, likely determines the rate of fatty acid oxidation in fasting animals. However, posttranslational protein modifications are likely also to contribute to the control of fatty acid degradation. Narbonne and Roy have previously shown that AMPK can phosphorylate and inhibit the triacylglycerol lipase ATGL-1, which rations lipid stores during dauer (Narbonne and Roy, 2009). Such regulatory mechanisms may very likely also control mobilization of fat stores during
starvation in older animals because starvation of adult animals causes an increase in the AMP:ATP ratio, which activates AMPK (Apfeld et al., 2004).

Only a few studies have combined quantitative proteomics with RNA-seq in C. elegans (Grun et al., 2014; Ma et al., 2014; Yang et al., 2015). Consistent with these previous observations, we also find that transcript levels show only a moderate correlation with protein levels for the bulk proteome and transcriptome (Figure 3C). This indicates that protein abundances are not only determined by transcript levels and transcriptional activity, but also via regulatory mechanisms affecting rates of translation, protein stability, and turnover. Most strikingly, we observe an increase in the levels of mRNAs encoding the fatty acid desaturases fat-1, 2, 4 and -6 in response to starvation, as previously reported (Settembre et al., 2013), while we observe a decrease in the abundance of the corresponding proteins (Figure S7). To this end, the starvation-induced increase in fat-6 mRNA depends on the presence of HLH-30, while FAT-6 protein abundance is independent on the presence of HLH-30. Given the fact that proteins are likely to regulate cellular processes and metabolic fluxes, our study therefore emphasizes the importance of directly measuring and evaluating protein levels, rather than relying upon measurements of mRNA levels as a surrogate for proteins, because relying solely on RNA abundance can lead to misinterpretations of regulatory mechanisms and of phenotypic outputs.

The mammalian transcription factor EB (TFEB) and its homologue in C. elegans HLH-30 have both been shown to regulate autophagy, lysosomal functions and lipid metabolism (Lapi erre et al., 2013; O'Rourke and Ruvkun, 2013; Settembre et al., 2013; Settembre et al., 2011). While these studies primarily were based on genetic analyses, HLH-30 functions had not previously been examined by proteomics. Thus, to identify which proteins respond differently to starvation in the wild type animals and the hlh-30 mutants, we calculated a simple score based on protein abundances and changes in protein abundance over time during starvation. This analysis showed that it is primarily the absolute protein abundance rather than the temporal change that best identifies proteins whose abundance depends on HLH-30.
Comparing starvation responses in wild type and *hlh-30* mutants, we found several significantly enriched GO terms among the highest scoring proteins (Figure 4). This included “Lipid localization”, a GO term encompassing several of the vitellogenins. Vitellogenesis describes the process where maternal yolk production provides the major nutrient source for the developing embryo. Vitellogenin genes are expressed in adult females within tissues specialized for yolk production, such as the insect fat body in fruit flies and in the intestine of *C. elegans*. Yolk is transported across the body cavity to the gonad, where it supplies developing oocytes with nutrients, including fat, until reproduction ceases. After reproduction, localization is no longer restricted to the intestine and oocytes, but instead extends throughout the organism, including the body cavity resulting in ectopic yolk deposition and hence loss of tissue function (Van Rompay et al., 2015; Zimmerman et al., 2015). Consistently, knock down of vitellogenins increases *C. elegans* lifespan (Seah et al., 2016), and levels of yolk protein are reduced in post-reproductive adults of long-lived *daf-2* animals (DePina et al., 2011). Thus, to further uncover the function of the *vit*-genes during starvation we examined the ability to survive in response to acute starvation after RNAi knock down of *vit-1* and *vit-5* in both wild type and in *hlh-30* animals. Curiously, we found that knock-down of either *vit-1*, or *vit-5*, did not affect survival of wild type animals, while knock down completely rescued the premature death of *hlh-30* animals under starvation conditions (Figure 6, Table 1). Since we found that *vit-1* knock down did not affect either the number, or size, of intestinal lipid droplets in wild type animals, but normalized their size and number in *hlh-30* animals (Figure 7), we speculate that loss of vitellogenins prevents ectopic deposition of lipids in *hlh-30* animals and consequently improves survival. In *eat-2* animals, which are inherently dietary restricted, it has been reported that the expression of >2,900 genes are altered compared with wild type animals, which includes genes involved in phosphorus metabolism, unsaturated fatty acid metabolism, eicosanoid and ceramide metabolism, lipid modification and transport, amino acid, amine and chitin metabolism and neuropeptide signaling (Heestand et al., 2013). Loss of *nhr-62* reversed the regulation of ~ 600 of these genes, including *vit-1* through *vit-6*, arguing that these genes are candidate targets for NHR-62 and play key roles in response to dietary restriction.
Hence, our present analyses suggest that HLH-30 also regulates the expression of the vit-genes and further argue that vitellogenins play fundamental roles under limiting nutrient levels.

Visvikis et al. recently identified HLH-30 and its mammalian homologue TFEB as a key transcriptional regulator of the early innate immune response involving antimicrobials and cytoprotective responses (Visvikis et al., 2014). Interestingly, lipoprotein metabolism and the innate immune systems are increasingly being recognized as being functionally linked. Despite it is yet to be identified in C. elegans, lipoproteins are via their ability of binding lipopolysaccharide (LPS) capable of protecting against LPS-induced toxicity, and to modulate the overall host response to this bacterial toxin (Barcia and Harris, 2005). We can therefore not exclude that the normalized distribution of intestinal lipid droplets in hlh-30 animals after vit-1 knock down contributes to host defense responses and thus improved survival under stress-full conditions.

Collectively, this study provides the first comprehensive analysis of temporal starvation responses that combines both proteomic and transcriptomic analyses. To maximize the value of these data for the research community we have incorporated all of the processed proteomics and RNA data showing responses to starvation in both wild type and hlh-30 animals into an open access, searchable online database (www.peptracker.com/epd). We foresee that the datasets not only will serve as a key resource for the scientific community for further understanding how C. elegans responds and adapts to starvation, but also accentuate the relevance of a combined analysis of transcript and protein levels in understanding of complex phenotypic responses. We envision that the genetic tractability of C. elegans, RNA interference, and mutant strain collections can serve as an excellent framework to further delineate how specific genes regulate starvation responses.

EXPERIMENTAL PROCEDURES

C. elegans strains and maintenance
The wild type N2 Bristol and the *hlh-30* mutant (tm1978, a kind gift from Dr. Malene Hansen, Sanford-Burnham Medical Research Institute) were used and handled using standard techniques (Brenner, 1974). Worms were at all times kept at 20 °C on NGM plates seeded with *E. coli* OP50. For starvation studies, worms were washed off seeded plates with M9 buffer and washed 2-3 times. Worms were transferred to empty NGM plates and starved for the indicated time.

Sample preparation for mass spectrometry

Worms were harvested in M9 buffer, pelleted by centrifugation, and all supernatant was removed. The pellet of worms was flash frozen in liquid nitrogen and stored at -80 °C. Worm pellets were fast-thawed in an 80 °C water bath and 50 µL pre-heated protein lysis, reduction and alkylation buffer was added to a final concentration of 1% sodium deoxycholate (SDC), 10mM tris(2-carboxyethyl)phosphoine (TCEP), 40mM chloroacetaldehyde (CAA)). Worms were lysed by cycles of tip sonication (Branson 2200), heating (80 °C) and vortexing. The protein concentration was measured by amino acid analysis (AAA) using a Biochrom 30 amino acid analyzer (Biochrom) as described (Hojrup, 2015). Proteins were digested with trypsin using the ISD:SDC(PT) protocol as described (Leon et al., 2013) with minor modifications. Briefly, 100 µg of protein per time point was digested with trypsin (1:50) at 37°C for 10 hours and subsequently dimethyl sulfoxide (DMSO) was added (10% final concentration) followed by 400uL ethyl acetate and TFA (0.25% final concentration) for phase-transfer clean-up of the digests. After centrifugation for 10 minutes at 14,000 x g, the peptide containing lower phase was transferred to a new tube and stored at -80 °C until analysed.

LC-MS/MS

Protein digests (about 500 ng) were mixed with 50 fmol of the synthetic *E. coli* ClpB internal protein standard (Waters Corporation, Milford, MA, USA), to afterwards enable estimation of absolute protein abundances by label-free quantification. Peptide separation was performed with an Ultimate 3000 nano UPLC system (Thermo Fisher Scientific, San Jose, CA, USA) fitted with a 2
22 cm, 180 μm ID Symmetry C18 trap column (Waters) and a 25 cm, 75 μM ID, BEH C18 (1.7 μM particles) analytical column (Waters). Peptides were trapped for 2 min at 15 μl/min with 0.1% TFA and separated at 350 nl/min using a 60 min gradient of 4-35% acetonitrile with 0.1% formic acid. Eluting peptides were ionized at 1.7 kV using a TriVersa NanoMate (Advion Biosciences, Ithaca, NY, USA) as nanoelectrospray ion source coupled to an Orbitrap Fusion mass spectrometer (Thermo Fischer Scientific). Full MS scans (350 to 1500 m/z) were acquired at 120,000 resolution (at 200 m/z) from 350 to 1500 m/z with wide window quadrupole isolation turned on. Full scan target was 5×10^5 with a maximum fill time of 100 ms and all data was acquired in profile mode using positive polarity. For tandem MS the instrument was run in top speed mode with maximum 5 s cycles selecting precursors above 1×10^5 intensity with charge state 2–6. Targets were isolated at 0.7 Th using the quadrupole followed by HCD fragmentation with normalized collision energy of 28 and rapid scan MS analysis in the ion trap. The MS2 ion AGC target was 1×10^4 with a maximum fill time of 30 ms and using the all-parallelizable-time (APT) option. Attempting to increase the overall experimental sensitivity and depth, a method variant was used alternating between each sample, using a maximum fill time of 45 ms combined with the only-single-charge-state-per-precursor option. For both methods the dynamic exclusion time was set to 25 s with a 10 ppm tolerance.

Database searching and quantification

Proteome Discoverer v1.4.0.288 (Thermo Fischer Scientific) was used to process the raw data files and perform database searches on an in-house Mascot server, version 2.3 (Matrix Science, London, UK). Fragmentation spectra were searched against a fasta formatted database containing all canonical UniProtKB entries for *Caenorhabditis elegans*, version 0214 (February 2014), with common contaminants and protein quantitation standards (26700 entries in total). Trypsin was selected as enzyme, allowing up to 2 missed cleavages with carbamidomethylation of cysteines as fixed modifications, and methionine oxidation and protein N-terminal acetylation as variable modifications. Search tolerances were set to 10 ppm for peptide precursors and 0.35 Da for
fragment ion masses. Peptide identifications were validated and filtered at 1% false discovery rate on peptide level using the percolator tool (Brosch et al., 2009) or (Spivak et al., 2009). Progenesis QI for proteomics v2.0 (Waters and/or Nonlinear Dynamics, UK) was used for label-free absolute protein quantification. All raw files were first imported and aligned followed by import and matching of the Proteome Discoverer search results. Absolute quantification was achieved by using the built in feature based on the Hi3 method (Silva et al., 2006) and the known amount of spiked-in protein standard.

For the calculation of fmol/µg the M_W of each protein was found using the online tool http://web.expasy.org/compute_pi/ (Bjellqvist et al., 1994; Bjellqvist et al., 1993; Wilkins et al., 1999). The total amount of protein (µg) in each probe was summed and the fmol OC values were divided by the median of the total amount of protein across all samples. The R language (RStudio version 0.98.1103) was used for further data analysis and figure preparation. q-values of the limma Rank product were calculated using the R script described in (Schwammle et al., 2013). To assign a biological function to significantly regulated proteins, the lists were subjected to the Gene Functional Classification tool of DAVID (version 6.8 Beta) (Huang da et al., 2009a, b).

RNA extraction and RNA-seq

Worm pellet was fast-thawed in 65°C water bath. Worms were lysed by incubation in 1mL Isol-RNA Lysis Reagent (Ref #2302700 5 PRIME) and vortexed on/off for 20 min. 100 uL bromochorophenol was added, samples vigorously vortexed and incubated for 15 min at room temperature to extract the RNA. The two phases were separated by centrifugation for 15 min at 12,000xg at 4 °C. The upper phase containing the RNA was transferred to new tubes and 600uL isopropanol was added and samples were incubated for 10 min at room temperature to precipitate the RNA. The RNA was pelleted by centrifugation for 8 min at 12,000xg at 4°C and the pellet washed several times in 70% ethanol. RNA was further cleaned using Qiagen RNeasy Protect Mini kit (Qiagen). For mRNA-seq 1µg total RNA was incubated with poly-dT beads to isolate
polyadenylated RNA, subjected to fragmentation and cDNA synthesis followed by library preparation (TruSeq RNA Sample Prep kit v2) performed according to the manufacturer’s (Illumina) instructions. Sequencing was carried out on a HiSeq1500 platform (Illumina).

Data analysis of RNA-seq results

Sequencing reads were mapped to the ce6 genome with STAR (Dobin et al., 2013) and further analysed in HOMER (Heinz et al., 2010). Differential expression was determined using EdgeR (Love et al., 2014). The UCSC Genome Browser (Kent, 2002; Kent et al., 2002) was used for data visualization.

Survival-span assay

Worms were synchronized as described above. Eggs were transferred to plates containing RNAi bacteria for hatching. After hatching L1 larvae was kept on RNAi bacteria until L4 stage (54 h) and then transferred to empty NGM plates containing kanamycin to induce starvation condition. 12 worms were placed on each plate and scored every day. A worm was scored dead when it was unresponsive to gentle prodding with a platinum pick.

CARS microscopy

Worms were bleached as described above and the egg pellet was transferred to NGM plates seeded with either RNAi control (L4440) or gene specific RNAi bacteria. When worms reached young adulthood (14 h post L4) they were washed of plates and washed twice with sterile water to remove bacteria. Worms were placed on empty NGM plates containing kanamycin. At 3, 6 and 8 hours of starvation, approx. 20 worms were mounted on 2 % agarose pads containing 10 µL 20 mM tetramizole (dissolved in M9) and sealed with a cover slide. Lipid droplets were monitored by CARS microscopy using a Leica TCS SP8 system with a CARS laser, picoEmerald (OPO, >600 mW at 780 nm/940 nm, pulse width 5–6 ps, 80 MHz; pump, >750 mW at 1,064 nm, pulse length 7
ps, 80 MHz) and the LAS AF/X software. The lasers were adapted to the symmetrical C-H stretch range by tuning the pump beam to 816.4 nm while keeping the Stokes beam constant at 1,064.6 nm. The output of both lasers was set to 1.3 W and the scan speed to 400 Hz. Only signals from the epi-CARS and epi-SHG (second harmonic generation) detectors were collected. Images were processed using ImageJ (NIH), and the number and size of intestinal lipid droplets were determined using the Lipid droplet counter plugin.

ACKNOWLEDGEMENTS

This work was supported by The Danish Council for Independent Research, Natural Sciences (NJF: grant #310-95-23459). We gratefully acknowledge scientific discussions with Dr. Lea Mørch Harder and Dr. Dennis Pultz, (Institute of Biochemistry and Molecular Biology, University of Southern Denmark). We acknowledge Malene Hansen (Sanford-Burnham Medical Research Institute, CA, USA) for providing the tm1978 strain. We would like to gratefully thank Dr. Mark Larance (Centre for Gene Regulation and Expression, College of Life Science, University of Dundee) and Ole N. Jensen (Department of Biochemistry and Molecular Biology, University of Southern Denmark, Denmark) for practical assistance and scientific discussions. Furthermore, we would like to thank Anne With for practical laboratorial assistance and Alejandro Brenes Murillo for bioinformatics advice.

AUTHOR CONTRIBUTIONS

REFERENCES

Table 1 Log-rank statistical analyses of starvation survival rates. Mean- and max survival and statistical significance were calculated for each experiment as detailed in Materials and Methods.

All experiments were carried out in triplicates, each comprising 9 or 10 plates with 12 animals on each.

<table>
<thead>
<tr>
<th>Strain</th>
<th>RNAi treatment</th>
<th>RNAi survival-span (d)</th>
<th>Number of RNAi animals</th>
<th>Control survival-span (d)</th>
<th>Number of Control animals</th>
<th>Max survival-span</th>
<th>p-value versus Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>N2</td>
<td>vit-1</td>
<td>7</td>
<td>89/120</td>
<td>7</td>
<td>78/108</td>
<td>9/10</td>
<td>0.9032</td>
</tr>
<tr>
<td></td>
<td>vit-1</td>
<td>7</td>
<td>82/120</td>
<td>8</td>
<td>85/108</td>
<td>9/10</td>
<td>0.0186</td>
</tr>
<tr>
<td></td>
<td>vit-1</td>
<td>5</td>
<td>69/120</td>
<td>6</td>
<td>88/120</td>
<td>9/10</td>
<td>0.0990</td>
</tr>
<tr>
<td></td>
<td>vit-5</td>
<td>7</td>
<td>85/120</td>
<td>7</td>
<td>78/108</td>
<td>9/10</td>
<td>0.8806</td>
</tr>
<tr>
<td></td>
<td>vit-5</td>
<td>7</td>
<td>69/108</td>
<td>8</td>
<td>85/108</td>
<td>10/10</td>
<td>0.5453</td>
</tr>
<tr>
<td></td>
<td>vit-5</td>
<td>5</td>
<td>88/120</td>
<td>6</td>
<td>88/120</td>
<td>9/10</td>
<td>0.1369</td>
</tr>
<tr>
<td></td>
<td>ssq-4</td>
<td>5</td>
<td>68/120</td>
<td>5</td>
<td>83/120</td>
<td>9/10</td>
<td>0.2839</td>
</tr>
<tr>
<td></td>
<td>ssq-4</td>
<td>7</td>
<td>81/120</td>
<td>6</td>
<td>91/120</td>
<td>10/10</td>
<td>0.5187</td>
</tr>
<tr>
<td></td>
<td>ssq-4</td>
<td>6</td>
<td>97/120</td>
<td>7</td>
<td>90/120</td>
<td>10/10</td>
<td>0.0156</td>
</tr>
<tr>
<td></td>
<td>unc-41</td>
<td>6</td>
<td>88/108</td>
<td>7</td>
<td>77/108</td>
<td>10/10</td>
<td>0.1885</td>
</tr>
<tr>
<td></td>
<td>unc-41</td>
<td>7</td>
<td>77/108</td>
<td>6</td>
<td>91/120</td>
<td>10/10</td>
<td>0.5584</td>
</tr>
<tr>
<td></td>
<td>unc-41</td>
<td>6</td>
<td>95/120</td>
<td>7</td>
<td>90/120</td>
<td>10/10</td>
<td>0.0029</td>
</tr>
<tr>
<td>JIN1375 (hli-30)</td>
<td>vit-1</td>
<td>7</td>
<td>93/120</td>
<td>5</td>
<td>79/120</td>
<td>9/8</td>
<td><0.0001</td>
</tr>
<tr>
<td></td>
<td>vit-1</td>
<td>7</td>
<td>81/120</td>
<td>5</td>
<td>89/120</td>
<td>9/7</td>
<td><0.0001</td>
</tr>
<tr>
<td></td>
<td>vit-1</td>
<td>6</td>
<td>83/120</td>
<td>5</td>
<td>73/108</td>
<td>9/7</td>
<td><0.0001</td>
</tr>
<tr>
<td></td>
<td>vit-5</td>
<td>7</td>
<td>82/120</td>
<td>5</td>
<td>79/120</td>
<td>9/8</td>
<td><0.0001</td>
</tr>
<tr>
<td></td>
<td>vit-5</td>
<td>6</td>
<td>88/120</td>
<td>5</td>
<td>89/120</td>
<td>9/7</td>
<td>0.0003</td>
</tr>
<tr>
<td></td>
<td>vit-5</td>
<td>5</td>
<td>83/120</td>
<td>5</td>
<td>73/108</td>
<td>9/7</td>
<td>0.0004</td>
</tr>
<tr>
<td></td>
<td>ssq-4</td>
<td>6</td>
<td>72/120</td>
<td>4</td>
<td>70/120</td>
<td>9/6</td>
<td><0.0001</td>
</tr>
<tr>
<td></td>
<td>ssq-4</td>
<td>5</td>
<td>85/120</td>
<td>5</td>
<td>85/120</td>
<td>10/7</td>
<td>0.0045</td>
</tr>
<tr>
<td></td>
<td>ssq-4</td>
<td>6</td>
<td>80/120</td>
<td>5</td>
<td>79/120</td>
<td>10/7</td>
<td><0.0001</td>
</tr>
<tr>
<td></td>
<td>unc-41</td>
<td>7</td>
<td>78/120</td>
<td>5</td>
<td>84/120</td>
<td>9/7</td>
<td><0.0001</td>
</tr>
<tr>
<td></td>
<td>unc-41</td>
<td>6</td>
<td>85/120</td>
<td>5</td>
<td>85/120</td>
<td>10/7</td>
<td><0.0001</td>
</tr>
<tr>
<td></td>
<td>unc-41</td>
<td>7</td>
<td>76/108</td>
<td>5</td>
<td>79/120</td>
<td>10/7</td>
<td><0.0001</td>
</tr>
</tbody>
</table>
Figure legends

Figure 1 Work-flow for label-free quantitative proteomics of starvation responses in C. elegans. A. C. elegans (N2 Bristol and the hlh-30 mutant TM1978) were starved at the mid-L4 larvae state for the time indicated and harvested for 2D-label-free proteomics and RNA-seq. For proteomics, proteins were extracted and digested with trypsin, and the resulting peptides were analyzed by 2D LC-MS/MS label-free quantitative proteomics. For RNA-seq total RNA was extracted and after polyA selection cDNA was prepared and analyzed by deep sequencing. B. Venn diagram showing the number of identified proteins in wild type animals and hlh-30 animals for the three biological replicates at each time point. The numbers of proteins detected with at least two peptides are indicated. C. Protein density plots showing the distribution of log2 ratios for each time point relative to the fed state for each both wild type animals and hlh-30 animals. The plots are based on the mean of the triplicates for each time point for ~4,400 identified proteins. D. Volcano plot of the identified proteins for each time point and for both wild type and hlh-30 mutant animals. Each point represents the difference in expression (fold-change) relative to fed animals (time = 0) plotted against the level of statistical significance. The plots are based on the mean of the triplicates for each time point for ~4,400 identified proteins. The color intensity indicates the density of data points.

Figure 2 Temporal profiling of starvation responses reveal early and late responses in proteomes. A. Heat map illustrating the temporal changes between fed wild type C. elegans and wild type C. elegans starved for 1, 2, 3, 4, 6, and 16 hours. Only proteins (1,780) that were significantly changed (q-value ≤0.05) at at least one time point, are depicted. Data were scaled across rows before mapping to colors. B. Dot plots of enriched KEGG pathways. Enrichment of KEGG pathways among the proteins in each of the 4 clusters shown in (A). The x-axis shows the fold enrichment of each KEGG pathway, whereas the color denotes the p-value and the size of the dot denotes the number of IDs assigned to each KEGG pathway.
Figure 3 Transcriptome profiling of starvation responses in C. elegans reveals a poor correlation between RNA and protein levels. A. Venn diagram showing the number of identified RNAs in wild type animals and hlh-30 animals for the three biological replicates at each time point.

B. Volcano plot of the identified mRNAs for each time point and for both wild type and hlh-30 mutant animals. Each point represents the abundance of a given mRNA relative to the fed animals (log$_2$ ratio) at time point 0 plotted against the level of statistical significance. The plots are based on the mean of the triplicates for each time point for ~10,700 identified genes. The color indicates the density of data points. C. Correlation of log-transformed protein intensities and log-transformed FPKM values (RNA intensities) from wild type animals and hlh-30 animals for each time point. Each graph is annotated with the calculated Spearman correlation coefficients (r).

Figure 4 Comparison and functional annotation of starvation-induced changes in protein and RNA abundance. A. Heat map illustrating the temporal changes in protein and RNA between fed wild type C. elegans and wild type C. elegans in response to starvation for 1, 2, 3, 4, 6, and 16 hours. Only proteins (2,750) and their corresponding RNAs that were identified at all time points are depicted. Data were scaled across rows before mapping to colors. B. Dot plots of enriched KEGG pathways in the four clusters shown in (A). The x-axis shows the fold enrichment of each KEGG pathway, whereas the color denotes the p-value and the size of the dot denotes the number of IDs assigned to each KEGG pathway.

Figure 5 Proteome profiling of starvation responses in hlh-30 animals identifies novel functions of HLH-30 in C. elegans. A. The score plotted as A (1-(Absolute correlation coefficient)) versus B (integrated difference between the curves). The coordinates of known HLH-30 targets are marked with the protein name in red. The color indicates the density of data points. B. Dot plots of enriched KEGG pathways among the proteins with a score above the 75th percentile. The x-axis shows the fold enrichment of each pathway, whereas the color denotes the p-value and the size of the dot denotes the count (number of IDs assigned to each KEGG pathway). Only GO terms with p-value < 0.05 are plotted. C. Dot plots of enriched GO terms.
among the proteins with a score above the 75th percentile. The x-axis shows the fold enrichment of each GO term, whereas the color denotes the p-value and the size of the dot denotes the count (number of IDs assigned to each GO term). D. Dot plots of enriched GO terms among the RNA with a score above the 75th percentile. The x-axis shows the fold enrichment of each GO term, whereas the color denotes the p-value and the size of the dot denotes the count (number of IDs assigned to each GO term).

Figure 6 Knock down of vitellogenins improves survival of *hlh-30* animals in response to acute starvation. Effects of RNAi mediated knock down of vitellogenins on starvation survival. Wild type or *hlh-30* animals were subjected to RNAi against *vit-1* (A), *vit-5* (B), *ssq-4* (C), *unc-41* (D) or control (L4440 empty vector) and subsequently starved at 20°C. Statistical analyses of data shown are reported in Table 1.

Figure 7 Knock-down of vitellogenin 1 affects number and size of intestinal lipid droplets in *hlh-30* animals but not in wild type animals. Intestinal lipid droplets were visualized by Coherent Anti-Stokes Raman Scattering microscopy and size and number of lipid droplets were determined by DropletFinder in ImageJ. The distribution of the lipid droplet size in both wild type animals and *hlh-30* animals was determined in fed animals and in animals starved for 3, 6, and 8 hours) subjected to either control RNAi or RNAi against *vit-1*. An overlay of all conditions is shown in the last column.

Supplemental information

Figure S1 Ranked plots for protein abundance based on the mean value derived from the triplicates for each time point in both genetic backgrounds.

Figure S2 Matrix representation of Pearson correlation values of the label-free protein abundances of each replicate against the others for both wild type animals (A) and *hlh-30* animals (B).
Correlations are uniformly high for early time points, varying only between $r = 0.92$ and 0.98.

Correlations are indicated in the color gradient to the right of each plot.

Figure S3 Volcano plot of the identified proteins after 16 hours starvation for both wild type animals. Each point represents the difference in expression (fold-change) relative to fed animals (time = 0) plotted against the level of statistical significance. Proteins that previously have been found regulated by starvation have been highlighted.

Figure S4 Dot plot of enriched GO terms for up- (A) and down-regulated (B) proteins in wild type animals, respectively. The x-axis indicates the duration of starvation, whereas the color represents enrichment and the size depicts $-\log_{10}(p$-value) of each GO term.

Figure S5 Pie diagrams visualizing the percentage of genes encoded in each chromosome in *C. elegans* identified in the present study (A) and according to The *C. elegans* Sequencing Consortium 1998 (B).

Figure S6 Number of significantly up- (blue) or down- (red) regulated proteins and mRNAs at each time point in wild type animals.

Figure S7 Protein and mRNA abundance of FAT-1/fat-1, FAT-2/fat-2, FAT-4/fat-4 and FAT-6/fat-6 in wild type (turquoise) and in *hlh-30* animals (red). Protein and mRNA abundances are shown in fmol/µg and RPKM, respectively.

Figure S8 Dot plot of enriched GO terms for up- (A) and down-regulated (B) mRNAs in wild type animals, respectively. The x-axis indicates the duration of starvation, whereas the color represents enrichment and the size depicts $-\log_{10}(p$-value) of each GO term.

Figure S9 A. Examples of known HLH-30 regulated proteins plotted as line graphs as log₂ transformed protein ratios relative to wild type fed (t = 0). The correlation and the absolute integrated area between the curve representing protein ratio for wild type and mutant are indicated for each protein in the plot. Graph representing wild type animals and *hlh-30* animals is shown in
turquoise and red, respectively. B. The absolute integral shown as density plot. The integral is plotted on the y-axis and the density on the x-axis. The value of the absolute integral for known HLH-30 regulated genes is shown in red lines and indicated by the protein name. New potential targets identified using the score are indicated in red with a dashed line.

Figure S10 Box plots including Turkey’s Five numbers for proteins according to the score (A) or the absolute integral score (B). Proteins above the upper-hinge (1.85) were considered of interest.

Figure S11 Protein- and mRNA abundances of vitellogenins in fed wild type animals and hlh-30 animals plotted as line graphs as log2 transformed protein ratios relative to time point 0. Graph representing wild type animals and *hlh-30* animals is shown in turquoise and red nuances, respectively.
Figure 1

A

2D LC-MS/MS analysis, Protein digestion, Total protein extraction, Fed or starvation (0, 1, 2, 3, 4, 6, 16 h), Total RNA extraction, polyA selection, Deep sequencing.

B

circles with numbers and percentages representing different groups.

C

Bar graphs showing Log2 ratios Starved/Fed for Wild type 1 hour to Wild type 16 hours.

D

Scatter plots showing log2 ratio and density for Wild type 1 hour to Wild type 16 hours.
Figure 2

A

Cluster I
- ACS-11
- ACS-17
- ACBP-6
- MDT-15
- EPG-3
- LBP-3
- LBP-6

Cluster II
- ACS-2
- ACS-7
- DAF-15
- ACOX-5
- LET-363
- T28F4.5
- ATG-18
- SOS1-2
- FT-2
- NiPI-3

Cluster III
- FASN-1
- ACS-3
- ACBP-6
- ACOX-2
- ECH-8
- LGG-1
- SAM-1
- WARS-1
- RARS-1

Cluster IV
- FAT-4
- FAT-8
- DAF-16
- ELO-5
- FARD-1
- FAAH-2
- ATP-2
- AAK-1
- ALH-10
- CARS-1

B

Cluster 1
- cel03013: RNA transport
- cel03040: Spliceosome

Cluster 2
- cel03013: RNA transport

Cluster 3
- cel00280: Glycine, serine and threonine metabolism

Cluster 4
- cel00140: Protein processing in endoplasmic reticulum
Figure 3

A

B

C
Figure 5

A

B

C

D

GO terms enriched for proteins with high score

GO terms enriched for RNA with high score

KEGG pathways enriched for proteins with high score

GO terms enriched for proteins with high score

GO terms enriched for RNA with high score
Figure 6

A

B

C

D

Percent survival

Days post L4

Days post L4

Days post L4

Days post L4

WT control

WT vit-1 RNAi

hh-30 control

hh-30 vit-1 RNAi

WT control

WT vit-5 RNAi

hh-30 control

hh-30 vit-5 RNAi

WT control

WT ssq-4 RNAi

hh-30 control

hh-30 ssq-4 RNAi

WT control

WT unc-41 RNAi

hh-30 control

hh-30 unc-41 RNAi
Figure S3
Figure S5

A. Chromosome representation of protein encoding genes in data:

- Chromosome I: 14%
- Chromosome II: 15%
- Chromosome III: 17%
- Chromosome IV: 13%
- Chromosome V: 16%
- Chromosome X: 25%

B. # of Protein encoding genes in Chromosomes according to The C. elegans Sequencing Consortium:

- Total: 1998
- Chromosome I: 14%
- Chromosome II: 15%
- Chromosome III: 18%
- Chromosome IV: 14%
- Chromosome V: 17%
- Chromosome X: 22%
Figure S6

of protein significantly regulated

16h
6h
4h
3h
2h
1h

0 50 100 200 300

of genes significantly regulated

16h
6h
4h
3h
2h
1h

0 100 300 500

Up
Down
Up
Down
Figure S7

Protein (fmol/µg)

RNA (RPKM)

FAT-1

Wild type

fh−30

Fed 1 h 2 h 3 h 4 h 6 h 16 h

0 1 2 3 4 5

0 2 4 6 8 10 12 14

Fat-1

Fed 1 h 2 h 3 h 4 h 6 h 16 h

0 2 4 6 8 10 12 14

FAT-2

Fed 1 h 2 h 3 h 4 h 6 h 16 h

0 2 4 6 8 10 12 14

Fat-2

Fed 1 h 2 h 3 h 4 h 6 h 16 h

0 2 4 6 8 10 12 14

FAT-4

Fed 1 h 2 h 3 h 4 h 6 h 16 h

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Fat-4

Fed 1 h 2 h 3 h 4 h 6 h 16 h

0 2 4 6 8 10 12 14

FAT-6

Fed 1 h 2 h 3 h 4 h 6 h 16 h

0.0 0.5 1.0 1.5 2.0

Fat-6

Fed 1 h 2 h 3 h 4 h 6 h 16 h

0 2 4 6 8 10 12 14
Figure S9

A

![Graphs showing the relationship between density, VPS, HLH, SSQ, CPR, and LGG over time.](image)

B

![Graph illustrating the relationship between absolute integral and density.](image)
Figure S10

A

<table>
<thead>
<tr>
<th>Number</th>
<th>Turkey's</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0024</td>
</tr>
<tr>
<td>2</td>
<td>0.2468</td>
</tr>
<tr>
<td>3</td>
<td>0.5215</td>
</tr>
<tr>
<td>4</td>
<td>1.0327</td>
</tr>
<tr>
<td>5</td>
<td>21.0417</td>
</tr>
</tbody>
</table>

B

<table>
<thead>
<tr>
<th>Number</th>
<th>Turkey's</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.12</td>
</tr>
<tr>
<td>2</td>
<td>0.67</td>
</tr>
<tr>
<td>3</td>
<td>1.07</td>
</tr>
<tr>
<td>4</td>
<td>1.85</td>
</tr>
<tr>
<td>5</td>
<td>27.81</td>
</tr>
</tbody>
</table>