What drives urban consumption in mainland China? The role of property price dynamics.
Chen, Yu-Fu; Funke, Michael; Mehrotra, Aaron

Published in:
Pacific Economic Review

DOI:
10.1111/1468-0106.12078

Publication date:
2017

Document Version
Peer reviewed version

Link to publication in Discovery Research Portal

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in Discovery Research Portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Users may download and print one copy of any publication from Discovery Research Portal for the purpose of private study or research.

You may not further distribute the material or use it for any profit-making activity or commercial gain.

You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
WHAT DRIVES URBAN CONSUMPTION IN MAINLAND CHINA? THE ROLE OF PROPERTY PRICE DYNAMICS

Yu-Fu Chen
University of Dundee
Economic Studies
y.f.chen@dundee.ac.uk

Michael Funke
Hamburg University
Department of Economics
michael.funke@uni-hamburg.de

Aaron Mehrotra
Bank for International Settlements
Monetary and Economic Department
aaron.mehrotra@bis.org

Abstract

This paper adds to the literature on wealth effects on consumption by disentangling house price effects on consumption for mainland China. In a stochastic modelling framework, the riskiness, rate of increase and persistence of house price movements have different implications for the consumption/housing ratio. We exploit the geographical variation in property prices by using a quarterly city-level panel dataset for the period 1998Q1 – 2009Q4 and rely on a panel error correction model. Overall, the results suggest a significant long run impact of property prices on consumption. They also broadly confirm the predictions from the theoretical model.

Keywords: Consumption, house prices, China, panel data
JEL-Classification: E21, R31, C23, O53.

This is the peer reviewed version of the following article: 'What drives urban consumption in mainland China? The role of property price dynamics', Pacific Economic Review, which has been published in final form at http://dx.doi.org/10.1111/1468-0106.12078. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.
WHAT DRIVES URBAN CONSUMPTION IN MAINLAND CHINA? THE ROLE OF PROPERTY PRICE DYNAMICS

1. Introduction

It is by now common knowledge that the housing bubble was the major, if not the only, cause of the subprime crisis and worldwide economic and financial crisis of 2007-2009. Just as the preceding property bubble had created dynamics that tended to be self-perpetuating, the dynamics of the broader economic crisis were also self-perpetuating, albeit in the opposite direction. Despite its importance, mainstream macroeconomics either treats housing as one of many consumption goods, or ignores the housing market altogether. On the other hand, conventional housing economics research for its part virtually ignores interactions with the macroeconomy.

With property prices soaring in China due to rapid economic growth, rising family incomes, accommodative monetary policy during the financial crisis, and continued migration to the cities, many economists worry that China risks being a host to the next great property bubble set to burst. Housing affordability in some of the larger cities such as Beijing, Hangzhou, Nanjing, Ningbo, Qingdao, and Shanghai have also become an increasingly prominent political issue. Being aware of the risk of derailing the housing market, the Chinese government has begun to lean against the wind, making an effort in spring 2010 to gradually halt the climb in house prices. In particular, down-payment requirements were raised across the country as a whole. Minimum mortgage interest rates have been increased, and home purchase restrictions have been set. The various measures, some of which have been in place now for more than two years, seem to have succeeded in cooling the market smoothly. A further measure to clamp down on the housing market is the possible introduction of a property tax throughout the country based on the value of housing.

Several papers have analysed the impact of housing wealth on consumption. Most of these studies, however, focus on the Anglo-Saxon or euro area countries. In contrast, the house price – consumption

1 Some observers argue that China’s inflated property prices are reminiscent of Japan’s real estate bubble in the latter half of the 1980s, and believe the Chinese authorities, via accommodative monetary policy and a quasi-fixed exchange rate, are in danger of repeating the mistakes of their Japanese neighbour. According to the evidence from eight large cities in Wu et al. (2010), housing markets look rather risky based on the affordability price-to-rent and price-to-income ratio measures. The upward trajectory in Chinese housing prices, however, does not necessarily represent a bubble. Structural factors, including favourable demographics, increased urbanisation, rapid income growth and high household saving rates, have underpinned the buoyant demand. Risks to financial stability due to falling housing prices are to some extent mitigated by the relatively low level of household indebtedness in China.

2 Property taxes were introduced in Shanghai and Chongqing in 2011.
nexus in Asia is far less researched than in Europe and the US due to the paucity of disaggregated data. This paper adds to the literature on house price effects on consumption by disentangling property price effects for mainland China. In a stochastic modelling framework, the riskiness, speed and persistence of house price movements have different implications for the consumption/housing ratio. We apply panel data techniques to a city-level dataset for mainland China. The heterogeneity present in the city-level data allows us to test whether the predictions from the theoretical model hold in the data, in addition to examining whether there is a significant overall impact of house prices on consumption in China.

The rest of the paper is organised as follows. Section 2 describes the theoretical house price – consumption model that is the main tool of our analysis. Section 3 describes the data, outlines the econometric methodology and presents the empirical results. Section 4 concludes and the data are explained in appendices.

2. Housing-Consumption Model Setup

How are property prices and consumption interrelated? To what extent do house prices influence consumption? Which mechanism underlies the link between property prices and consumption? To assess the importance of these and other factors, we construct a simple model along the lines of the work by Piazzesi et al (2007) and Flavin and Nakagawa (2008), which incorporates an explicit role for housing. The driving forces of the model are permanent and transitory price shocks. The model is then simulated, feeding into it realized Chinese house price shocks as well as counterfactual scenarios.

A representative consumer’s utility is a function of housing services and consumption of ordinary goods. The consumer maximises his intertemporal utility by choosing his optimal consumption paths for non-housing goods and housing services (thus the stock of housing), applying a constant discount

3 Ahuja et al. (2010) have recently investigated house price misalignments in China using alternative empirical approaches. They find a small and insignificant impact of property prices on Chinese consumption. However, this may be driven by the fact that the authors match city-level data for housing prices with provincial-level macro variables, whereas our study uses city-level data for both. Another difference between their study and ours is that the models estimated in Ahuja et al. (2010) are in first differences, not considering long-run relationships. Koivu (2010) has also provided evidence on the impact of equity and residential property prices on consumption in Mainland China using a structural vector autoregression, but finds that the link between asset prices and consumption is not robust. Ciarlone (2011) uses a broader set of emerging market countries showing that both real and financial wealth positively affect households’ consumption in the long-run.

4 The terms “house prices” and “property prices” will be used interchangeably in this paper.

5 We deliberately adopted a modelling approach that neglects other assets for expositional reasons. We think that this simplification allows some transparent insights that can be obscured by more complicated dynamic models. Furthermore, this modelling strategy is particularly appealing in China because the evolving financial sector has offered few other investment options. People buy homes as a way of saving for the future. This is particularly important in China, where the population cannot rely on state pensions and other social security benefits.

3
factor. Other durable goods are ignored here. The intertemporal utility V of the consumer is expressed as

$$V_t = E_t \left[\sum_{s=t}^{T} \beta^{s-t} u_s(c_s, h_s) \right],$$

where c_s denotes consumption in period s, h_s is housing stock, $E_t[.]$ is the expectation operator based on information available at period t, and β^{s-t} is the discount factor for the future utility stream, $u_s(c_s, h_s)$. We are abstracting from bequeathing terminal wealth. The consumption/housing budget constraint is represented by differences in house asset values/payoffs over periods, nonfinancial income y_t, riskfree asset A_t, housing level h_t, and consumption c_t,

$$A_t + c_t + p_t h_t = \left(1 + r_t - \delta \right)p_{t-1} h_{t-1} + y_t + (1 + r_0)A_{t-1}.$$

The meaning of the intertemporal budget constraint (2) is straightforward. Each period, the consumer needs to decide on consumption c_t and the level of housing stock h_t, given y_t and initial wealth A_{t-1}. It is assumed that the lending/borrowing rates are the same for simplicity. Once the optimal choices of c_t and h_t have been made, the riskfree asset level A_t is determined. The housing stock in previous period is denoted by h_{t-1} and house price are p_{t-1}. The difference between h_t and h_{t-1} is then net changes in housing stock for the consumer so that in the current period, determining h_t is equivalent to determining housing investment. The annual maintenance costs are equal to the constant proportion δ of the house value. The house prices p_t and gross housing returns r_t are stochastic, adding a source of uncertainty in the household’s decision problem. The net growth of housing wealth is

6 As Grossman and Laroque (1991), we consider owner-occupied housing and ignore rental markets. Rental markets would allow investors to separate the consumption and investment dimensions of housing. Implicitly, we are assuming here that there are market frictions that make buying a preferred alternative. For an analysis of buying vs. renting, see Yao and Zhang (2005).

7 Another modelling approach would be to follow recent work by Coeurdacier et al. (2011). The authors propose a “risky steady state”, in contrast to a traditional deterministic steady state, incorporating information about future expected risk and the associated optimal decisions. In this framework, income could be modelled as a stochastic variable as well. However, given the particular assumptions concerning the stochastic processes, permanent and transitory shocks could not be evaluated similarly as in our approach.
The constant non-housing income is denoted by y. If the consumer remains in the same house, the budget constraint $c_t = y_t$ applies, provided that $A_t = A_{t+1} = 0$. If the consumer plans to trade down to a cheaper home, or to sell for the last time, $h_t < h_{t-1}$ and higher consumption spending c_t and/or higher A_t applies. By contrast, homeowners who trade up are characterised by $h_t > h_{t-1}$ leading to lower c_t and/or A_t. The optimal allocation of consumption and housing is given by the Bellman equation, with A_{t-1} serving as a state variable for the intertemporal indirect utility V_t,

$$V_t(A_{t-1}) = \max_{c_t,h_t} E_t \left[u_t(c_t,h_t) + \beta V_{t+1}(A_t) \right].$$

The corresponding two first order conditions with respect to c_t and h_t are

$$\frac{\partial u_t}{\partial c_t} = \beta E_t \left[\frac{dV_{t+1}}{dA_t} \right],$$

and

$$\frac{\partial u_t}{\partial h_t} = \beta p_t E_t \left[\frac{dV_{t+1}}{dA_t} \right].$$

Note, that the envelope theorem yields

$$\frac{dV_t}{dA_{t-1}} = \beta (1 + r_0) E_t \left[\frac{dV_{t+1}}{dA_t} \right].$$

Simple algebraic manipulation leads to

$$\frac{\partial u_t}{\partial c_t} = \beta (1 + r_0) E_t \left[\frac{\partial u_{t+1}}{\partial c_{t+1}} \right].$$

8 The term $1 + r_0 - \delta$ is an approximation as $(1 + r_t) p_{t-1} (1 - \delta) h_{t-1} \approx (1 + r_t - \delta) p_{t-1} h_{t-1}.$

9 To simplify, we have abstracted from time-varying y_t. This is done for computational reasons, to keep the dimensionality of the problem low.
and

\[1 = p_t \frac{\partial u_t / \partial c_t}{\partial u_t / \partial h_t}. \]

To close our model, we assume standard CES preferences:

\[u(c_t, h_t) = \frac{\left(h_t^\alpha + c_t^\alpha \right)^{1-\rho}}{1-\rho}, \alpha \leq 1, \quad \gamma \geq 0, \quad 0 < \rho \neq 1, \]

where \(\rho \) is related to substitution within the consumption basket over time, \(\gamma \) is a share parameter, and \(\alpha \) denotes “intratemporal” substitution between consumption and housing at \(t \) [see Piazzesi et al (2007) and Flavin and Nakagawa (2008)]. \(\alpha \to 1 \) signifies perfect substitutes, \(\alpha \to -\infty \) perfect complements, and \(\alpha \to 0 \) Cobb-Douglas utility. Solving for the equilibrium, equation (9) yields

\[\frac{c_t}{h_t} = \left(\frac{1}{\gamma p_t} \right)^{1-\alpha}. \]

Three properties of equation (10) are noteworthy. First, for reasonable values of \(\alpha \), higher housing prices lead to a higher consumption/housing ratio. Second, if consumption and housing are perfect complements \((\alpha \to -\infty) \), house prices have little impact on the ratio \(c_t/h_t \). Third, if consumption and housing are close substitutes \((\alpha \to 1) \), house prices will raise the ratio \(c_t/h_t \).

So far we have attempted to keep our theoretical model as simple and straightforward as possible. In particular, for the sake of generality, no specific stochastic process for house prices has been assumed. Next, we dig deeper into the microfoundations and suggest two particular versions of the model through which risky house prices and capital gains may affect consumption.\(^\text{10}\) We begin with a setting

\(^\text{10}\) Needless to say, things are not so simple. One caveat regarding the modelling framework is that the relationship between asset prices and borrowing constraints, which is at the core of the financial accelerator model, is not included in the model. On the household side, increasing house prices may allow homeowners to borrow against the value of housing collateral, which can boost spending. Due to the growing importance of financial products that allow for mortgage equity withdrawal, this effect has recently attracted a lot of attention in the literature. In Gan (2010), the consumption sensitivity of the majority of households in Hong Kong SAR was not driven by credit constraints. The alleged reason is that refinancing is not as common in Hong Kong SAR
in which agents consider stochastic capital gains as permanent. We assume that housing prices p_t have an independent log-normal distribution over time such that $\ln p_t \sim N(g, \sigma^2)$, where g is the expected capital gain rate. Any shocks drawn from such a distribution are permanent, as they are equivalent to geometrical Brownian motion for housing prices. By Ito’s Lemma and an approximation of the exponential function via Taylor’s expansions, we obtain

$$E_t \left[\frac{c_{t+1}}{h_{t+1}} \right] = \left(\frac{1}{\gamma} p_t \right) \left(1 - \alpha \right) e^{-\gamma t} \left(1 - \frac{\alpha}{2(1-\alpha)^2} \sigma^2 \right) \approx \left(\frac{1}{\gamma} p_t \right) \left(1 - \frac{g}{1-\alpha} + \frac{\alpha}{2(1-\alpha)^2} \sigma^2 \right).$$

Equation (11) shows that uncertainty about future housing prices has a positive impact on the future consumption/housing ratio for $0 < \alpha < 1$, while uncertainty has a negative impact on the ratio for complements, $-\infty < \alpha < 0$.\(^\text{11}\)

An important implication of the permanent income hypothesis is that households are likely to make smaller changes in consumption when they face (unexpected) transitory house price shocks than when they face permanent house price shocks. This implies that the relationship between consumer spending and house prices is more subtle than that reflected in equation (11). In order to depict temporary vs. permanent changes in house prices, we use the mean-reverting Ornstein-Uhlenbeck given by the stochastic differential equation

$$dp = \mu(\bar{p}_0 e^{\gamma t} - p)dt + \sigma dpW,$$

where μ is the speed of mean-reversion, σ is the risk parameter, W is a standard Wiener process, the housing price trend has an expected growth rate g, and \bar{p}_0 is the initial price level of the mean/trend at $t = 0$.\(^\text{12}\) The parameter μ determines the rate at which house price shocks dissipate and house prices

\(^\text{11}\) The dangers of basing risk on average long-term house price volatility are that volatility can change very quickly, that extreme but infrequent house price declines tend to be discounted, and that possible future volatility may be overlooked. Furthermore, standard deviations based on past house price data ignore cross-correlations and systemic risk. It is clear that in the recent financial crisis 2008-2009 all four occurred.

\(^\text{12}\) Even equation (12) amounts to assuming that agents are perfectly certain that future market conditions are governed by this particular stochastic process. However, this assumption may be farfetched. Agents may think that other stochastic processes are also likely and may have no idea of the relative plausibility of these stochastic processes. A further limitation is that the true stochastic process for house prices is likely to be more complex than the one we have assumed, involving higher-order AR or MA terms. See, for example, Poterba (1991).
revert to the mean/trend. In other words, the size of the parameter \(\mu \) determines the perceived permanent-transitory decomposition of house price shocks.\(^{13}\) This illustrates, in broad brushstrokes, how different types of shocks affect consumption.

It should be emphasized that the modelling setup incorporates an asymmetric treatment of income and house prices. Since China has not experienced typical business cycles, we assume that Chinese households’ perceptions are that GDP growth rates are not flashes in the pan. As a result, income shocks are considered permanent and expected future income prospects depend on current income.\(^{14}\)

This simplification does not change the nature of our modelling results below.

As the consumption-housing ratio takes the functional form \(\left(\frac{p}{\gamma} \right)^{1/1-\alpha} \), it is not possible to obtain closed-form solutions for the consumption responses of equation (12). To tackle this problem, discrete-time numerical simulations are used to study households’ responses to perceived transitory and permanent shocks on \(c/h \). In order to get a clear “feel” for the dynamics of the model, we must first specify a solution method that will lead to discrete realizations of housing prices, given the chosen levels of parameters. Several options are available at this point, but the structure of the model points to use of a sequential iterations method. It works as follows. Equation (12) is proxied by the discrete stochastic differential equation (Euler scheme)

\[
(13) \quad p_{t+\Delta t} = p_t + \mu(p_t - \bar{p}_t)\Delta t + \sigma p_t \sqrt{\Delta t} \varepsilon_t, \quad \varepsilon_t \sim N(0,1),
\]

and

\[
(14) \quad \bar{p}_{t+\Delta t} = \bar{p}_t + g \bar{p}_t \Delta t,
\]

where the normal random variables, \(\varepsilon_t \), are generated via the central limit theorem and the Box-Muller (1958) method for transforming a uniformly distributed random variable to a normally distributed one with given mean and variance, and \(\Delta t \) represents a small change in \(t \).

\(^{13}\)The approach here draws inspiration from the persuasive empirical analysis in Lettau and Ludvigson (2004), a widely cited and influential study. They show that aggregate consumption responds to permanent shocks but not to transitory shocks in aggregate wealth. They also found that most of the variation in housing wealth was transitory. This is a point that will be elaborated further in the next section.

\(^{14}\)In the study of business cycles, semantics are important. According to the NBER, a business cycle features a period of positive growth in aggregate economic activity, labelled the expansion phase, followed by a period of negative growth, the contraction or recession phase. By this definition, and judging by year-on-year growth rates, China has yet to experience a business cycle during the reform period; although the growth rate in real GDP has not been smooth, it has never been negative.
In the calibration exercise below, we illustrate the model’s properties, in particular the impact of different values of μ on the degree of mean reversion. Our base parameters, chosen for realism, are $p_0 = 0.65$, $\bar{p}_0 = 0.65$, $\Delta t = 0.01$. The baseline growth rate $g = 0.03$ is set in line with the trend growth rate of Beijing’s quarterly real house price index.

15 An important point to stress is that the calibration exercise focuses on conceptual issues in the interpretation of the model sketched above. In other words, the calibration exercise should be viewed as theory with numbers, not empirical analysis.
Figure 1: Characterising House Price Dynamics

We set $\sigma = 0.2$ and depict the results using values of μ ranging from 0.25 to 1.0 in the four panels of Figure 1 (the shock series and baseline specification are otherwise identical). We have computed high-frequency realisations of the stochastic process and then changed the frequency to a lower quarterly one, using one realization only. The deterministic trend line in the figure is the trend value for $P_0e^{\mu t}$.

The graphs show that larger values for μ imply less persistent shocks, i.e. there is a higher degree of mean-reversion to the deterministic trend line.

To further highlight the properties of the model, Figure 2 provides the risk-return trade-off surface between the c/h-ratio, the standard deviation σ, and the permanent-transitory decomposition of house price shocks μ. Note that $\alpha = 0.5$, $\gamma = 1$, $g = 0.03$, with one million Monte Carlo simulations.
The graph indicates that the house price – consumption nexus varies in response to changes in perceived uncertainty about the sustainability of house price gains/losses. An increase in σ renders housing more risky, which tends to reduce consumers’ willingness to invest in housing.

Figure 3 displays a sensitivity analysis of the optimal c/h ratio vis-à-vis g and μ. Households will run down c/h if house price shocks are more temporary (higher μ) and raise c/h for higher growth rates of house prices g. This is a reminiscent of Lettau and Ludvigson (2004).

The foregoing analysis provides a theoretical underpinning for the house price shock – consumption nexus. The next section offers descriptive evidence of the data used and presents the econometric
methodology in some detail. Thus, we study the extent to which the effects at work in the model are also present in the Chinese data.

3. Empirical Application

3.1. Data

Prior to the econometric analysis, we describe the data set. Our panel dataset covers 35 major Chinese cities over the time period 1998Q1 to 2009Q4. This 12-year period coincides with China’s peak phase of urbanisation and private housing market boom. The 35 major cities account for one quarter of the total urban population residing in more than 600 Chinese cities. These 35 major cities represent all municipalities directly under the federal government, provincial capital cities, and quasi provincial capital cities in China (see Figure 4). For each city, we use data on consumption expenditure per capita, income per capita, and housing prices, the latter covering both residential and commercial property. All city-level data are from the CEIC database, transformed into real terms by deflating by the consumer price index. The property price indices used in our study are compiled by the National Bureau of Statistics and are based on sample surveys. Our sample includes more than 10,000 units since July 2005. The data were collected via reporting forms and interviews, for a total of 70 large and medium-sized cities. We use housing price data for those cities where income and consumption data are available for model estimation. Details on data construction are given in Appendix A.

16 For Guangzhou and Shenzhen, the dataset covers the period 1998Q2-2009Q4. The dataset allows us to take advantage of the significant variation in shocks to housing prices within and between markets. On the other hand, the house price data have certain limitations. The available time series are relatively short and cover only the post-Asian crisis period in the 1990s. However, longer time series of house price data may not improve the results since China has experienced a regime-shift in the housing market in 1998, which can be regarded as a milestone in housing reform and can be taken as the start of the private housing market in China. Indeed, until the late-1990s, the allocation of apartment units to most urban households was determined by employers, primarily government institutions and state-owned enterprises. The government initiated a market-oriented housing market in 1998 via the privatisation of the existing urban housing stock to current occupants at sharply discounted prices.

17 Most of the fluctuations in housing wealth \(p_h \) are attributable to house price movements. Therefore we can focus on \(p \) to capture housing wealth fluctuations in Chinese cities.

18 The advantage of our city-level panel dataset is that the returns to housing differ greatly across cities. In areas with high growth and significant constraints on the supply of housing, as e.g. in several coastal cities, positive house price shocks are more likely to result in higher permanent prices, while in Chinese cities with fewer constraints such a house price shock would be largely transitory, as supply increases over time.
Housing price developments in the cities have been quite heterogeneous, as is clear from figures of the series in Appendix B. Although house prices are correlated across most cities, aggregate Chinese house price changes clearly mask sharp regional differences. This heterogeneity allows us to split the sample in terms of the parameters of interest in Figures 2 and 3 – riskiness (σ) and growth rate (g) of housing prices. Similarly, we investigate the importance of the persistence (μ) of property price shocks using filtering techniques. The lowest growth in real housing prices was experienced in Kunming, a fall of 0.2\% during our sample period. The highest growth was for Ningbo, 70.5\%. Other cities with significant growth in housing prices include Qingdao and Hangzhou. The riskiness of housing prices – measured by their standard deviation – was similarly highest in Ningbo and Qingdao and lowest in Changchun and Xining. The considerable cross-city heterogeneity in housing dynamics enables an examination of the effects of property price movements across cities but also provides useful information on the property price – consumption nexus for the economy as a whole.
3.2. Econometric Methodology

Panel methods are now widely used in cross-sectional macro data sets, since they provide greater power than individual time series studies and hence greater efficiency. Empirical analysis of such datasets generally involves a system of $N \times T$ equations (N cities and T time observations) that can be estimated in different ways. The choice of the pooled cross-section time-series approach depends on the size of N and T. Pesaran et al. (1999) emphasized that there are two traditional methods for estimating panel models: averaging and pooling. The former involves running N separate regressions and calculating coefficient means.\(^{19}\) A drawback to averaging is that it does not account for the fact that certain parameters may be equal over cross sections. Alternatively, pooling the data typically assumes that the slope coefficients and error variances are identical. This is unlikely to be valid for short-run dynamics and error variances, although it could be appropriate for the long run. Pesaran et al. (1999) proposed the PMG method, which is an intermediate case between the averaging and pooling methods of estimation, including aspects of both. The Pooled Mean Group Estimation (PMG) method restricts the long-run coefficients to be equal over the cross-section, but allows for the short-run coefficients and error variances to differ across groups on the cross-section. Given their shared institutional framework and common market, the assumption of common long-run parameters for all Chinese cities is a reasonable assumption.\(^{20}\) In contrast, it is more difficult to assume homogeneity in the short-run dynamics. Formally, the PMG estimator is based on an Autoregressive Distributive Lag ARDL(p,q) model:

\[
(15) \quad y_{it} = \sum_{j=1}^{p} \lambda_{ij} y_{it-j} + \sum_{j=0}^{q} \delta_{ij} x_{it-j} + \mu_i + \varepsilon_{it},
\]

where x_{it} ($k \times 1$) is the vector of explanatory variables for city i, μ_i represents the fixed effects, the coefficients of the lagged dependent variables (λ_{ij}) are scalars, δ_{ij} are ($k \times 1$) coefficient vectors, and ε_{it} is the usual error term. T must be large enough so that the model can be estimated for each cross

\(^{19}\) See, for example, the Mean Group (MG) estimator method suggested by Pesaran and Smith (1995).
\(^{20}\) There are numerous cross-country studies investigating the role of housing wealth in consumption [see e.g. Hiebert and Roma (2010)]. In these studies (albeit fruitful ones) it is difficult to circumvent the omitted variable bias. Substantial unobservable and/or immeasurable differences in institutions and policies make cross-country results problematic. This disadvantage of cross-country research can certainly be mitigated by using a within-country dataset with greater homogeneity. In this respect, studies of China have a unique advantage. On the one hand, China is a rather centralised country with a unified administrative and political system. On the other hand, there are substantial cross-city differences in terms of GDP per capita.
In our empirical model, \(y_{it} \) denotes consumption, and \(x_{it} \) includes income per capita and the property price index. Equation (15) can be re-parameterized:

\[
\Delta y_{it} = \phi_1 y_{i,t-1} + \beta_1 x_{it} + \sum_{j=1}^{p-1} \lambda_{ij} \Delta y_{i,t-j} + \sum_{j=0}^{q-1} \delta_{ij} \Delta x_{i,t-j} + \mu_i + \varepsilon_{it},
\]

where \(\phi_i = \left(1 - \sum_{j=1}^{p} \lambda_{ij} \right) \), \(\beta_i = \sum_{j=0}^{q} \delta_{ij} \), \(\lambda_{ij} = - \sum_{m=j+1}^{p} \lambda_{im} \), and \(\delta_{ij} = - \sum_{m=j+1}^{q} \delta_{im} \). In addition, we assume that the residuals in (16) are i.i.d. with zero mean, variance greater than zero and finite fourth moments.

Secondly, the roots of equation (16) must lie outside the unit circle. The latter assumption ensures that \(\phi_i < 0 \), and hence that there exist a long-run relationship between \(y_{it} \) and \(x_{it} \) defined by

\[
y_{it} = \left(\frac{\beta'_i}{\phi_i} \right) x_{it} + \eta_{it}.
\]

The long-run homogeneous coefficient is equal to \(\theta = \phi_i = -\frac{\beta'_i}{\phi_i} \), which is the same across groups.

The PMG uses a maximum likelihood approach to estimate the model and a Newton-Raphson algorithm. The lag length for the model can be determined using, for instance, the Schwarz Bayesian Information Criteria. The estimated coefficients in the model do not depend on whether the variables are \(I(1) \) or \(I(0) \).

Under large \(N \) and fixed \(T \) dynamic panel models with fixed effects imply a small-sample downward lagged dependent variable bias that has been shown analytically by Nickell (1981). In order to avoid this bias the literature has focussed on instrumental variable estimation (GMM) applied to first differences. Examples include Arellano and Bond (1991) and Holtz-Eakin et al. (1988). Unfortunately, the asymptotically efficient GMM estimator obtained after first-differencing has been found to suffer from substantial finite sample bias due to weak instruments.

The PMG allows for heterogeneous dynamics and error variances. We test for long-run homogeneity using a joint Hausman test based on the null of equivalence between the PMG and Mean Group estimates.

The Hadri panel unit root test, allowing for heterogeneity in the series, suggests that the series are likely to be integrated of order 1, \(I(1) \). In the testing procedure, a constant and trend are included as deterministic terms for the series in levels, and a constant is therefore only included for the series in first differences. The null hypothesis of stationarity can be rejected for both housing prices and consumption in levels at 5 percent level. In contrast, for the same series in first differences, the null hypothesis of stationarity cannot be rejected. For income, we reject the null of stationarity in levels at 5 percent level. For the series in first differences, stationarity is still rejected at 5% level (p-value 0.03) but not at 1% level. We therefore continue with the assumption that the series are integrated of order one, which makes it possible that the series are cointegrated.

\[\text{21}\] Under large \(N \) and fixed \(T \) dynamic panel models with fixed effects imply a small-sample downward lagged dependent variable bias that has been shown analytically by Nickell (1981). In order to avoid this bias the literature has focussed on instrumental variable estimation (GMM) applied to first differences. Examples include Arellano and Bond (1991) and Holtz-Eakin et al. (1988). Unfortunately, the asymptotically efficient GMM estimator obtained after first-differencing has been found to suffer from substantial finite sample bias due to weak instruments.

\[\text{22}\] The Hadri panel unit root test, allowing for heterogeneity in the series, suggests that the series are likely to be integrated of order 1, \(I(1) \). In the testing procedure, a constant and trend are included as deterministic terms for the series in levels, and a constant is therefore only included for the series in first differences. The null hypothesis of stationarity can be rejected for both housing prices and consumption in levels at 5 percent level. In contrast, for the same series in first differences, the null hypothesis of stationarity cannot be rejected. For income, we reject the null of stationarity in levels at 5 percent level. For the series in first differences, stationarity is still rejected at 5% level (p-value 0.03) but not at 1% level. We therefore continue with the assumption that the series are integrated of order one, which makes it possible that the series are cointegrated.
estimation.23 Under the null hypothesis, the difference in estimated coefficients for the Mean Group and the PMG is not statistically different, and for PMG the estimate is more efficient.

3.3. Empirical Results

Our analysis is conducted in two stages. First, we examine whether there is any significant effect of housing prices on consumption. Second, exploiting the cross-sectional heterogeneity in housing price movements and the theoretical model specified above, we split the sample and examine whether there are differences between the consumption-response to the average rate of increase in house prices versus the riskiness of prices. The importance of persistence in house price shocks is analysed using filtering techniques. We emphasize that while the theoretical model includes the consumption/housing ratio and the empirical analysis considers the response of consumption to housing price movements, the approaches are consistent with each other. A major motivation for buying a house in China is to save for the future. If higher housing prices lead to higher consumption, less money is available for housing purchases and saving (ceteris paribus); therefore the consumption/housing ratio should also increase.24

Contrary to equations (10) and (11), we included income as an explanatory variable in equation (16). Essentially any estimate of the property price effect on consumption is to some extent subject to endogeneity and may be due to a third common factor such as expected permanent income. We follow previous work in assuming that a large part of the house price dynamics is exogenous [Ho and Wong (2008)]. More practically, we have included per capita income in the x_t vector of explanatory variables to filter out endogeneity.25 In order to determine the lag length of the error correction model, we apply the conventional Akaike and Schwarz Bayesian information criteria. Assuming a maximum lag length of 4 lags in levels for our quarterly data – allowing for one year of dynamics – both criteria suggest that three lags in first differences is indeed the optimal lag length for our model. Table 1 presents the results for this lag length, with standard errors in parentheses. Only the long-run relationships between the levels of the variables in equation (16) are reported.26

23 As shown by Nickell (1981), the downward lagged dependent variable bias depends on $1/T$ and is much less of a concern when T is large and of the same order of magnitude as N. In this latter case, heterogeneity of cities is a more serious problem, so that imposing homogeneity of all short and long run parameters could lead to inconsistent results [see e.g. Lee et al. (1996)].

24 Moreover, as mentioned in the context of the theoretical model, for reasonable values of the “intratemporal” substitution parameter α, higher housing prices also lead to a higher consumption/housing ratio at time t.

25 Endogeneity is also mitigated by the use of disaggregated (city-level) data.

26 The table reports standard errors without taking into account that the model specifications are the result of a specification search based on the same data. Strictly speaking, this makes them inappropriate, because the
Table 1: Long-Run Estimates of Consumption Equation

<table>
<thead>
<tr>
<th></th>
<th>(1) Full Sample</th>
<th>(2) High Growth Subsample</th>
<th>(3) Low Growth Subsample</th>
<th>(4) High Volatility Subsample</th>
<th>(5) Low Volatility Subsample</th>
<th>(6) Full Sample - Permanent Shocks</th>
<th>(7) Full Sample - Transitory Shocks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed of adjustment</td>
<td>-0.502 (0.062)</td>
<td>-0.646 (0.095)</td>
<td>-0.371 (0.073)</td>
<td>-0.591 (0.098)</td>
<td>-0.419 (0.077)</td>
<td>-0.500 (0.031)</td>
<td>-0.304 (0.118)</td>
</tr>
<tr>
<td>Long-run income elasticity</td>
<td>0.802 (0.013)</td>
<td>0.775 (0.017)</td>
<td>0.884 (0.024)</td>
<td>0.779 (0.020)</td>
<td>0.804 (0.029)</td>
<td>0.807 (0.013)</td>
<td>0.845 (0.006)</td>
</tr>
<tr>
<td>Long-run house price elasticity</td>
<td>0.081 (0.029)</td>
<td>0.129 (0.034)</td>
<td>0.047 (0.118)</td>
<td>0.122 (0.038)</td>
<td>0.136 (0.138)</td>
<td>0.064 (0.031)</td>
<td>-0.304 (0.118)</td>
</tr>
<tr>
<td>Log-likelihood</td>
<td>2769.99</td>
<td>1353.65</td>
<td>1419.62</td>
<td>1348.09</td>
<td>1422.76</td>
<td>2716.14</td>
<td>2708.54</td>
</tr>
<tr>
<td>N x T</td>
<td>1538</td>
<td>748</td>
<td>790</td>
<td>747</td>
<td>791</td>
<td>1502</td>
<td>1504</td>
</tr>
</tbody>
</table>

Notes: Standard errors in parentheses. Column (1) gives Pooled Mean Group estimates for full sample. Column (2) omits 18 cities with the lowest average housing price growth rates and column (3) the 17 cities with the highest. Column (4) omits 18 cities with the lowest volatility in house price developments and column (5) the 17 cities with the highest. Column (6) gives the responses to permanent house price shocks and (7) to temporary house price shocks.

Our benchmark system, including all cities and all time periods, is shown in column (1). The adjustment coefficient is statistically significant and negative, and the estimated speed of adjustment is -0.502. The negative and statistically significant coefficient suggests that there is indeed cointegration between the variables, and the estimated consumption relation returns to long-run equilibrium. As the data are in logarithms, we can simply interpret the estimates as elasticities. Most importantly, we find a statistically significant long-run impact of housing prices on consumption, which is in line with findings of a number of empirical papers using datasets from various economies. The long-run house price elasticity for the full sample is 0.081, which suggests that a 1 percent increase in real house prices will increase consumption by 0.08 percent. Moreover, the long-run income elasticity after consumption completely adjusts is estimated at 0.802, with a high statistical significance. Clearly, an income elasticity below one is feasible only if the saving rate is increasing over time. Our estimate for

distribution of the test statistics is conditional upon the lag length specification search and therefore no longer a t distribution.

27 We also consider a robustness test whereby we shorten the sample by two years, first from the start of the sample period and secondly from the end. The results for the long-run importance of income and housing prices remain robust for these alternative samples. Interestingly, when the last two years are omitted - years when China experienced a rapid increase in housing prices and the government was concerned about real estate sector developments – the long run impact of housing prices on consumption becomes larger in magnitude.
35 large cities is in line with the empirical fact that the gross saving rate was increasing as a ratio to GDP in China during the time sample, from 40.2 percent to 52.3 percent of GDP.\footnote{Using data from World Bank Development Indicators Database.}

Under long-run slope homogeneity, the pooled estimators are consistent and efficient. However, the (non-pooled) Mean Group estimator would provide consistent estimates as well, but these are inefficient if slope homogeneity holds. Therefore, we can test the effect of heterogeneity on the means of the slope coefficients by applying a Hausman-type test (see Pesaran et al. 1999). In our case, for the benchmark model (1), the Hausman test suggests that there is no systematic difference between the Mean Group and Pooled Mean Group estimates (p-value 0.15).

We additionally estimated the benchmark model, column 1, by including annual time dummies. These may capture time-varying precautionary saving motives such as healthcare expenditures and/or pension provisions, particularly by elderly households.\footnote{Chamon and Prasad (2008) have shown that it is the elderly that save the most in China, contrary to the typical lifecycle pattern.} This “self-insurance” of Chinese households reflects saving as a response to uncertainty as to one’s future financial situation and unanticipated future events. Furthermore, stock market wealth gains may affect the results, and returns from this market are also subsumed in the time dummies. However, none of the included time dummies were statistically significant.

Next, to link the empirical framework more closely to the predictions by the theoretical model, we split the sample according to average growth rates in housing prices and their riskiness. Finally, using filtering techniques, we explore the impacts of different types of housing price movements, i.e. permanent vs. transitory movements. In other words, we chose to explore a number of different empirical specifications involving complicated house price – consumption interactions and do not attempt to identify a single specification.

The theoretical model predicts that households raise consumption for higher growth rates of housing prices. We split the sample into the 17 cities with the highest average rates of increase in house prices during the estimation period and the 18 cities with the lowest average rates of increase. The results, presented in columns (2) and (3) for the high and low growth subsamples, respectively, confirm the predictions from the theoretical model: the long-run house price elasticity is high and statistically significant for the cities that experienced strong growth in house prices and statistically insignificant in the rest.

Another prediction from the theoretical model is that more risky housing prices lower consumers’ willingness to invest in housing (and should increase the consumption/housing ratio accordingly). The results from splitting the sample in terms of house price volatility (standard deviation) into the 17
cities with highest volatility and the 18 with the lowest, are presented in columns (4) and (5). Again, the results confirm the suggestion from the theoretical model: in the cities with the riskiest housing price movements, consumption reacts more strongly to house price developments (column 4). In contrast, where housing price volatility is low (column 5), the reaction of consumption to housing price movements is not significantly different from zero.

Finally, we evaluate the response of consumption to permanent and temporary house price shocks. The first step was to use a structural time series model and Kalman filter to extract households’ perceptions about which parts of property price shocks are permanent or transitory. The local level state space model used to identify the permanent and transitory components consists of a measurement equation, describing how observations are related to the state variable, and a transition equation describing the evolution of the state variable. Maximum likelihood estimation by numerical optimization is carried out using computed estimates of the hyperparameters, i.e. most non-zero values of the error matrices of the measurement and transition equations, which govern the movement of the components. After estimation, the filtered states are calculated using the Kalman filter. The filtered estimators are, by definition, the expected values conditional on the observations.

In our local level model, using a trend-cycle decomposition, we have a time-varying trend component and a cyclical component at a short business cycle frequency (5 years). We interpret the stochastic trend component obtained from the state space model by filtering as the perceived permanent

30 The results in columns (2) to (5) of table 1 are based on splitting the entire sample of 35 cities in two subsamples relative to high/low growth rates of house prices and more/less risky housing markets. In both the two different specifications, the first group of countries (those with a high growth rates of housing prices and those with more risky housing markets) is made up of 17 countries, while the second group of 18. This admittedly ad-hoc procedure has been chosen in order to have sufficient observations and similar dimensions of the panels.

31 Structural time series models are now quite widely used, and a full description can be found in Harvey (1989). The Kalman filter is the optimal filter for a linear model subject to Gaussian noise and therefore an indispensable tool for modelling information and learning. It also allows for the derivation of time-dependent coefficients in agents' optimal decision rules, and permits a neat application of Bayesian learning to updating optimal forecasting rules from period to period as new information becomes available.

32 For a thorough exposition of the state space methodology, the reader may refer to Harvey (1989). From the state space form, the Kalman filter and the associated smoothing algorithm enable maximum likelihood estimation of the model parameters and signal extraction of the unobserved components, conditional on a set of initial parameters and the appropriate information set.

33 Estimation was carried out using the STAMP 6.0 software. Model selection criteria are based on Koopman et al. (1999). First and foremost, it is suggested that the convergence of the numerical maximum likelihood estimation be examined. Koopman et al. (1999) suggest that strong convergence is a necessary condition for the models to be suitably specified and that failure to satisfy this condition could be a symptom of misspecification. Further goodness of fit statistics and diagnostics using the innovations, i.e. the one-step-ahead prediction errors, are provided in Appendix C. In most cases, the disturbances display the ideal conditions. Harvey et al. (1998) have stressed that time series models based on unobserved components are effective even in the presence of messy features such as outliers, structural breaks and non-Gaussian errors.
component of housing prices and the cyclical component as the perceived temporary component. The perceived permanent component is shown in Appendix B.

The second step entailed including both components of house prices within our empirical modelling framework. The results for Kalman-filtered housing price data are presented in column (6) for the permanent component and column (7) for the temporary component. As suggested by the theoretical model, permanent shocks in housing prices have a statistically significant impact on consumption. Further, our analysis suggests that the impact of temporary shocks on consumption is statistically significant and negative, which is in line with the prediction from our theoretical model that households run down the consumption-housing ratio if house price shocks are of the more temporary variety. Using one standard error, the marginal propensity to consume out of permanent house price shocks is between 0.03 and 0.09.

Our estimates are relatively high, given that a conventional estimate of house price effects for the United States is that an increase in house prices of $1 leads to an increase in consumption of 5 cents (Lettau and Ludvigson, 2004). Using US data at the state and national level, Case et al. (2005) and Benjamin et al. (2004) report estimates ranging from 0.05 to 0.09. Microstudies, such as Bostic et al. (2009) and Lehnert (2004) have found the elasticities to be between 0.04 and 0.06. The international evidence is more mixed: it ranges from 0.03 for Australia to 0.11 – 0.17 for US regions (Case et al., 2005). The marginal propensity to consume out of housing wealth in Slacalek (2009) is 0.04 – 0.06 for countries with developed mortgage markets. Furthermore, the housing wealth effect has risen substantially since 1998. Two studies for Hong Kong SAR covering the period 1982 – 2001 report elasticities of 0.07 – 0.14 (Lai, 2002; Cutler, 2004). For mainland China, the relatively large impact of house price changes on consumption can be understood in light of the fact that in an evolving financial system with a limited number of financial instruments, house ownership constitutes a major share of household wealth.

It is interesting to apply our estimate of 0.064 in column 5 of Table 1 to the Chinese economy in 2009. In 2009, based on the property price index for 70 cities, real estate prices in China increased on average at an annualised rate of 5.8 percent in nominal terms. Deflated by CPI inflation, real estate prices increased by 2.3 percent, which translates to a $0.23 = 0.15 percent increase in consumption. Over the same period, the growth of consumption in real terms was 9.9 percent. Thus, 1.5 percent of Chinese real consumption growth in 2009 was driven by the property price increase.

34 While the negative coefficient is quite large in magnitude, this is justified by the fact that the movements of the permanent component of housing prices are much larger than those of the temporary component (standard deviation of 0.145 for the former versus 0.018 for the latter).

35 In a recent study exploiting stickiness in consumption growth to distinguish between immediate and eventual wealth effects, Carroll et al. (2010) find that the immediate marginal propensity to consume from a $1 change in housing wealth in the US is about 2 cents, and the final eventual effect is about 9 cents.
Using property price data for Beijing and Shanghai, and the evolution of per capita consumption in these cities in 2009, 6.5 percent of real consumption growth in Beijing and 3.5 percent in Shanghai were driven by the property price increase. A significant decline in Chinese real house prices could therefore have important implications in terms of consumption responses, assuming that the dynamics between the variables remain similar going forward.\(^{36}\)

4. Conclusions

The aim of this paper is to shed light on the interplay between house prices and consumption in mainland China. In a stochastic modelling framework, the riskiness, speed and persistence of house price shocks have different implications for the consumption/housing ratio. Using available city-level house price panel data, we evaluate the link between property prices, income and consumption by estimating consumption equations. Data for 35 large cities indicate that during the time period of the analysis, 1998Q1 – 2009Q4, the developments in housing prices have been quite heterogeneous across geographic regions. This heterogeneity allows us to test the predictions from the theoretical model regarding the impacts of different factors – the volatility and growth rate of house prices and their persistence – on consumption. The benchmark results, obtained by the pooled mean group estimator, show that there is a significant impact of overall housing price movements on consumption. Splitting the sample in terms of riskiness of housing prices and speed of asset price growth, we find that the cities with faster growth in housing prices and higher volatility show the strongest links between housing prices and consumption, in line with the theoretical model. Similarly, permanent shocks to housing prices have a positive and statistically significant impact on consumption, in stark contrast to temporary house price shocks. Summarizing, the results suggest a significant long run impact of property prices on consumption. Thus, we conclude that the strong rise in property prices over the past decade has had a significant effect on consumption spending in China.

We consider the modelling and empirical exercise we have performed, with its virtues and limitations, as a first step of a research agenda on the Chinese house price dynamics. An interesting cross-check of the results would be to use Chinese microcensus data if such data were to become available. This would allow us to shed further light on the mechanisms underlying the link between consumption and property prices, such as the impact of high vs. low incomes, the different behaviour of renters vs. homeowners and the like. Another research challenge would be a general equilibrium framework in which house prices are determined endogenously.

\(^{36}\) Recent analysis by the IMF (2012) suggests that a disorderly fall in real estate investment in China could have implications for growth both in China and in the global economy.
References

Appendix A: Data Construction

For income, we use quarterly data on disposable income per capita for 2007Q1-2009Q4. For 1998Q1-2006Q4, a monthly series for disposable income (discontinued from 2007Q1 onwards) is used to construct quarterly observations.

For consumption, we use quarterly data on consumption expenditure per capita for 2007Q1-2009Q4. Prior to this, we use monthly data on living expenditure per capita (discontinued in 2007Q1) to construct quarterly observations for this variable.

For housing prices, we use month-on-month changes for 2009 to build an index for house prices, setting 2009M1=100. Then, quarterly year-on-year growth rates are used to construct the series back to 1998Q1.

All series are transformed into real terms by deflating by the quarterly city consumer price index (CPI). A quarterly CPI for the cities is constructed as follows. We use annual data on CPI growth for the 35 cities in order to construct an annual CPI index for each city. Then, a proportional Denton method is applied to interpolate annual to quarterly observations using a quarterly indicator series (in our case the national CPI where quarterly data are available), imposing the condition that the interpolated quarterly series matches the annual totals.

All series are seasonally adjusted using the X-12 procedure.

There is a technical detail that must be mentioned. The official Chinese series, including those for housing and consumer prices, are often expressed as percentage changes with respect to the previous year/month, and not as index numbers with some base year = 100. This requires the procedure to construct indices as described above.
Appendix B: Figures of Series

Real Consumption

Real Income

Real House Prices

Real House Prices (solid lines) and their Kalman-Filtered Permanent Component (dotted lines)

Appendix C: Goodness-of-Fit and Diagnostic Tests for Maximum Likelihood Estimation

<table>
<thead>
<tr>
<th>City</th>
<th>Beijing</th>
<th>Changchun</th>
<th>Changsha</th>
<th>Chengdu</th>
<th>Chongqing</th>
<th>Dalian</th>
</tr>
</thead>
<tbody>
<tr>
<td>R²</td>
<td>0.993</td>
<td>0.828</td>
<td>0.963</td>
<td>0.973</td>
<td>0.986</td>
<td>0.969</td>
</tr>
<tr>
<td>q-ratio</td>
<td>0.344</td>
<td>1.000</td>
<td>1.000</td>
<td>0.290</td>
<td>1.000</td>
<td>0.19</td>
</tr>
<tr>
<td>BS</td>
<td>1.122 [0.571]</td>
<td>3.267 [0.195]</td>
<td>1.834 [0.399]</td>
<td>13.488 [0.001]</td>
<td>6.117 [0.047]</td>
<td>1.566 [0.561]</td>
</tr>
<tr>
<td>Q</td>
<td>7.438 [0.592]</td>
<td>27.678 [0.001]</td>
<td>11.998 [0.213]</td>
<td>8.127 [0.521]</td>
<td>12.874 [0.168]</td>
<td>12.251 [0.200]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>City</th>
<th>Fuzhou</th>
<th>Guangzhou</th>
<th>Guiyang</th>
<th>Haikou</th>
<th>Hangzhou</th>
<th>Harbin</th>
</tr>
</thead>
<tbody>
<tr>
<td>R²</td>
<td>0.963</td>
<td>0.838</td>
<td>0.956</td>
<td>0.946</td>
<td>0.995</td>
<td>0.962</td>
</tr>
<tr>
<td>q-ratio</td>
<td>1.000</td>
<td>1.000</td>
<td>0.094</td>
<td>0.011</td>
<td>0.102 BS</td>
<td>0.297</td>
</tr>
<tr>
<td>BS</td>
<td>86.82 [0.000]</td>
<td>34.989 [0.000]</td>
<td>5.220 [0.074]</td>
<td>0.561 [0.755]</td>
<td>8.129 [0.401]</td>
<td>0.592 [0.744]</td>
</tr>
<tr>
<td>Q</td>
<td>8.663 [0.469]</td>
<td>9.536 [0.389]</td>
<td>11.002 [0.276]</td>
<td>11.173 [0.264]</td>
<td>4.690 [0.861]</td>
<td>13.095 [0.158]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>City</th>
<th>Hefei</th>
<th>Hohhot</th>
<th>Jinan</th>
<th>Kunming</th>
<th>Lanzhou</th>
<th>Nanchang</th>
</tr>
</thead>
<tbody>
<tr>
<td>R²</td>
<td>0.976</td>
<td>0.994</td>
<td>0.839</td>
<td>0.989</td>
<td>0.988</td>
<td>0.988</td>
</tr>
<tr>
<td>q-ratio</td>
<td>1.000</td>
<td>0.094</td>
<td>1.000</td>
<td>0.133</td>
<td>1.000</td>
<td>0.428</td>
</tr>
<tr>
<td>BS</td>
<td>96.082 [0.852]</td>
<td>96.848 [0.852]</td>
<td>8.520 [0.730]</td>
<td>1.354 [0.508]</td>
<td>15.491 [0.000]</td>
<td>4.946 [0.146]</td>
</tr>
<tr>
<td>Q</td>
<td>12.508 [0.186]</td>
<td>9.931 [0.395]</td>
<td>14.677 [0.100]</td>
<td>11.151 [0.266]</td>
<td>5.939 [0.780]</td>
<td>6.395 [0.495]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>City</th>
<th>Nanjing</th>
<th>Nanning</th>
<th>Ningbo</th>
<th>Qingdao</th>
<th>Shanghai</th>
<th>Shenyang</th>
</tr>
</thead>
<tbody>
<tr>
<td>R²</td>
<td>0.994</td>
<td>0.900</td>
<td>0.997</td>
<td>0.995</td>
<td>0.991</td>
<td>0.992</td>
</tr>
<tr>
<td>q-ratio</td>
<td>1.000</td>
<td>0.003</td>
<td>1.000</td>
<td>0.133</td>
<td>0.325</td>
<td>0.393</td>
</tr>
<tr>
<td>BS</td>
<td>4.696 [0.096]</td>
<td>8.625 [0.013]</td>
<td>8.416 [0.812]</td>
<td>12.574 [0.002]</td>
<td>15.288 [0.001]</td>
<td>3.808 [0.149]</td>
</tr>
<tr>
<td>Q</td>
<td>17.722 [0.039]</td>
<td>18.193 [0.033]</td>
<td>8.296 [0.505]</td>
<td>10.446 [0.316]</td>
<td>17.109 [0.047]</td>
<td>4.087 [0.906]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>City</th>
<th>Shenzhen</th>
<th>Shijiazhuang</th>
<th>Taiyuan</th>
<th>Tianjin</th>
<th>Urumqi</th>
<th>Wuhan</th>
</tr>
</thead>
<tbody>
<tr>
<td>R²</td>
<td>0.972</td>
<td>0.982</td>
<td>0.948</td>
<td>0.995</td>
<td>0.960</td>
<td>0.979</td>
</tr>
<tr>
<td>q-ratio</td>
<td>0.058</td>
<td>0.003</td>
<td>0.055</td>
<td>0.662</td>
<td>1.000</td>
<td>0.948</td>
</tr>
<tr>
<td>BS</td>
<td>2.501 [0.286]</td>
<td>8.483 [0.656]</td>
<td>11.048 [0.004]</td>
<td>18.713 [0.000]</td>
<td>0.227 [0.893]</td>
<td>0.809 [0.667]</td>
</tr>
<tr>
<td>Q</td>
<td>7.635 [0.571]</td>
<td>6.955 [0.642]</td>
<td>6.082 [0.732]</td>
<td>5.249 [0.980]</td>
<td>9.281 [0.412]</td>
<td>4.798 [0.852]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>City</th>
<th>Xiamen</th>
<th>Xian</th>
<th>Xining</th>
<th>Yinchuan</th>
<th>Zhengzhou</th>
</tr>
</thead>
<tbody>
<tr>
<td>R²</td>
<td>0.970</td>
<td>0.993</td>
<td>0.878</td>
<td>0.961</td>
<td>0.949</td>
</tr>
<tr>
<td>q-ratio</td>
<td>1.000</td>
<td>0.796</td>
<td>1.000</td>
<td>0.06</td>
<td>0.039</td>
</tr>
<tr>
<td>BS</td>
<td>4.408 [0.110]</td>
<td>0.895 [0.639]</td>
<td>0.753 [0.686]</td>
<td>4.881 [0.087]</td>
<td>0.254 [0.881]</td>
</tr>
<tr>
<td>Q</td>
<td>11.192 [0.263]</td>
<td>6.377 [0.702]</td>
<td>6.818 [0.656]</td>
<td>8.391 [0.495]</td>
<td>8.339 [0.500]</td>
</tr>
</tbody>
</table>

Notes: R² is the coefficient of determination. q-ratio refers to the signal-to-noise ratio for the level (slope in the case of Beijing, Dalian, Hangzhou, Shenzhen and Yinchuan; cycle in the case of Jinan, Lanzhou, Ningbo, Xiamen and Xining; for the mentioned cities the relative variance of the level or slope is zero). BS is the Bowman-Shenton test statistic for non-normality. Q is the Box-Ljung test statistic for residual autocorrelation; p-values are in brackets.