Reduction of bacterial adhesion on Ag-TiO₂ coatings

Chen Liua, Lei Genga, YiFan Yua, Yutong Zhanga, Buyun Zhao b, Shuai Zhanga, Qi Zhao c,*

a Department of Chemistry, School of Pharmaceutical Science, Capital Medical University, Beijing 100069, China
b Medical Research Council Laboratory of Molecular Biology, University of Cambridge, UK
c Division of Mechanical Engineering, University of Dundee, Dundee DD1 4HN, UK

Article history:
Received 19 October 2017
Accepted 11 February 2018
Available online 12 February 2018

Keywords:
Adhesion
Biomaterials
Ag-TiO₂ coatings
Nanocomposites
Surface energy

1. Introduction
Titanium (Ti) and its alloys are widely used in both orthopedic and dental implants due to their excellent mechanical strength, resistance to corrosion and biocompatibility. However these implants are highly susceptible to biofilm formation, leading to implant-associated infections [1]. Both silver and titanium dioxide (TiO₂) have been known as broad-spectrum bactericides for a long time. The antibacterial efficiency of silver coatings mainly depends on the release rate of silver ions from the coatings [2], while the TiO₂ photocatalysts generate strong oxidizing power for the observed damaging cell properties when illuminated with UV light [3,4]. Recently it has been demonstrated that the Ag-TiO₂ coatings show the synergistic effect on the antibacterial activity [5,6]. However, the mechanism are still not well understood. The Ag-TiO₂ coatings are usually prepared by sol-gel [7] or by magnetron sputtering [8] or by CVD [9]. Electroless plating is a cost-effective coating technique with inherent uniform coating thickness and excellent coating adhesion strength to the substrate [10]. To the best of our knowledge, there is no report on the preparation of Ag-TiO₂ nanocomposite coatings using the electroless plating technique. The aim of the present work is to investigate the mechanism of the enhanced antibacterial effect of the Ag-TiO₂ coatings prepared by the electroless plating technique.

2. Materials and methods
2.1. Preparation of Ag-TiO₂ coatings
Pure Ti disks (10 mm diameter) were used as substrates. UV irradiation was carried out on the both sides of the disks at 385 nm for 2 hs to activate the inert Ti surfaces, following by the immersion of the disks into coupling agent solution for 2hs in order to create the reactive surfaces as described previously [11]. The TiO₂ powder was brought from Aldrich, with particle size of 25 nm. The plating bath composition mainly included AgNO₃ 2–7 g/l; NaOH 1.5–5 g/l; NH₃·H₂O 100–150 ml/l; C₆H₁₂O₆ 2–7 g/l and TiO₂ 0.1–2 g/l. A range of Ag-TiO₂ coatings with the different TiO₂ concentrations (0.1, 0.3, 0.5, 1.5 and 2 g/l) were prepared by an electroless plating technique at room temperature under dark and stirring (40 rpm) conditions. Ag coating was also prepared for comparison.

2.2. Characterization of Ag-TiO₂ coatings
The surface morphology of the coatings were observed by scanning electron microscopy (SEM) (S-4800, Japan). The elemental compositions were determined by Energy Dispersive X-ray analysis (EDX) (EMAX350, Japan). The release of Ag ions from the coatings were determined by inductively coupled plasma atomic emission spectrometry ICP-AES (Varian 710-ES, USA). The Ag coating or Ag-TiO₂ coating was immersed in sealed tank containing 25 ml of PBS and kept at 37 °C at 150 rpm, and then the concentration of Ag ions was measured at different immersion time. The contact
angle on the coatings after exposed UV light was measured using the sessile drop method with a Dataphysics OCA-20 contact angle analyzer with distilled water (W), diiodomethane (Di) and ethylene glycol (EG) as the test liquids, respectively. The surface energy components of the coatings, including Lifshitz-van der Waals (LW) apolar (γ_{LW}^a), electron donor (γ_{2}^D) and electron acceptor (γ_{2}^A) were calculated using the van Oss approach [12].

2.3. Bacterial adhesion

E. coli (ATCC 8739) and S. aureus (ATCC 6538) were used for bacterial adhesion assays. The bacterial suspension with a 10^7 CFU/ml concentration for each type of bacteria was prepared using the method described previously [10]. For bacterial adhesion assays, five replicate samples of each coating were immersed in a glass tank containing 25 ml of the bacterial suspension at 37°C for 1 hr, 24 hr, 3 days and 7 days, respectively. Then the total number of adhered bacteria for each sample were determined using a viable plate counting method [10].

3. Results and discussion

3.1. Surface characterizations

In this study, 5 types of Ag-TiO2 coatings with different TiO2 concentrations (0.1, 0.3, 0.5, 1.5 and 2 g/l) were prepared. The corresponding TiO2 contents in the coatings which were 2.40, 3.05, 4.82, 9.56 and 12.60 wt% respectively, were determined by EDX analysis based on Ti content in the coatings (Table 1). Fig. 1a shows the morphology of Ag-TiO2 coating (TiO2 9.56 wt%) with typical polygon rounded hillock units for Ag structure. The TiO2 particles with sizes in the range of 25 nm–50 nm (white dots) were homogeneously incorporated in the Ag matrix. Fig. 1b shows the corresponding EDX image of the Ag-TiO2 coating. The element composition for Ti, O and Ag was 5.73 wt%, 17.18 wt% and 77.09 wt%, respectively.

The ICP-AES measurements indicated that the Ag ion release rates from all the Ag-TiO2 coatings were much higher than that from the Ag coating. Fig. 2 shows typical comparison results between the Ag-TiO2 coating (TiO2 9.56 wt%) and the Ag coating. Clearly, the incorporation of TiO2 nano-particles into Ag coating promoted Ag ion release.

Table 1 shows the contact angle and surface energy components of coating samples.

<table>
<thead>
<tr>
<th>Sample</th>
<th>TiO2 content (wt. %)</th>
<th>Contact angle, θ (deg)</th>
<th>γ_{LW}</th>
<th>γ_{D}</th>
<th>γ_{TOT}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ti</td>
<td>–</td>
<td>79.2 ± 1.5</td>
<td>60.0 ± 0.3</td>
<td>37.1 ± 0.5</td>
<td>35.09</td>
</tr>
<tr>
<td>Ag</td>
<td>–</td>
<td>73.7 ± 1.2</td>
<td>48.5 ± 0.6</td>
<td>46.9 ± 1.1</td>
<td>35.11</td>
</tr>
<tr>
<td>Ag-TiO2 1</td>
<td>2.40</td>
<td>62.8 ± 2.2</td>
<td>42.4 ± 1.0</td>
<td>38.9 ± 1.2</td>
<td>38.38</td>
</tr>
<tr>
<td>Ag-TiO2 2</td>
<td>3.05</td>
<td>68.1 ± 3.1</td>
<td>46.3 ± 1.4</td>
<td>47.8 ± 2.1</td>
<td>36.31</td>
</tr>
<tr>
<td>Ag-TiO2 3</td>
<td>4.83</td>
<td>70.7 ± 2.5</td>
<td>54.0 ± 0.9</td>
<td>57.0 ± 0.6</td>
<td>32.02</td>
</tr>
<tr>
<td>Ag-TiO2 4</td>
<td>9.56</td>
<td>61.4 ± 0.5</td>
<td>45.9 ± 0.2</td>
<td>53.3 ± 1.5</td>
<td>36.53</td>
</tr>
<tr>
<td>Ag-TiO2 5</td>
<td>12.69</td>
<td>57.8 ± 1.4</td>
<td>63.3 ± 0.5</td>
<td>32.0 ± 0.3</td>
<td>26.68</td>
</tr>
</tbody>
</table>

Fig. 1. Typical (a) SEM and (b) EDX images of Ag-TiO2 coating with TiO2 9.56 wt%.

![Fig. 1](image_url)

![Fig. 2](image_url)

![Graph](image_url)
3.2. Bacterial adhesion assays

The results show that the number of adhered bacteria increased with increasing contact time for all the coatings. The Ag-TiO2 coatings performed best against bacterial adhesion compared with Ti surface and Ag coating at different contact time. Fig. 3 shows typical evaluation results with the Ag-TiO2 coating (TiO2 9.56 wt%). The Ag-TiO2 coating reduced the adhesion of E. coli by up to 43.5% and 24.5%, respectively as compared with the Ti surface and the Ag coating (Fig. 3a). The Ag-TiO2 coating reduced the adhesion of S. aureus by up to 50.7% and 47.2%, respectively as compared with the Ti surface and the Ag coating (Fig. 3b).

4. Discussion

It is well known that the antibacterial efficiency of silver based coatings increases with increasing the release rate of Ag ions [2]. The results indicated that the Ag ion release rates from all the Ag-TiO2 coatings were much higher than that from the Ag coating (Fig. 2). This finding explains the mechanism of the synergistic effect of Ag-TiO2 coatings or why the Ag-TiO2 coatings performed better than the Ag coating against bacterial adhesion. In general bacteria are negatively charged and the bacteria are repelled from the surface by similar charge, when closing to the surface. It was reported that the surface charge relates to the surface energy components of electron donor (\(\gamma_d\)). The higher \(\gamma_d\) value, the more negatively charged the surface [11]. Table 1 clearly indicates that the \(\gamma_d\) value of the Ag-TiO2 coatings significantly increased due to the incorporation of TiO2 nano-particles into Ag coatings. This means the incorporation of TiO2 nano-particles increases the negative charge of the Ag-TiO2 coatings. As both the E. coli and S. aureus are negatively charged, this further explains why the Ag-TiO2 coatings are repellent to the bacteria and performed much better than the Ag coating or Ti surface against bacterial adhesion.

5. Conclusions

The incorporation of TiO2 nano-particles into Ag matrix not only significantly promoted the Ag ion release, but also significantly increased the electron donor (\(\gamma_d\)) surface energy or negative surface charge of the coatings, which lead to the enhanced antibacterial effect of the Ag-TiO2 coatings.

Acknowledgments

Financial supports from the Scientific Research Common Program of Beijing Municipal Commission of Education (Grant No. KM201510020008), the Internal Exchange Training of Teacher (07001169050171), the National Nature Science Foundation of China (51701131) and the UK Engineering and Physical Sciences Research Council (EP/P00301X/1) are acknowledged.

References