Risk factors for the development of invasive cancer in unresected ductal carcinoma in situ
Maxwell, Anthony J; Clements, Karen; Hilton, Bridget; Dodwell, David J; Evans, Andrew; Kearins, Olive

Published in:
European Journal of Surgical Oncology

DOI:
10.1016/j.ejso.2017.12.007

Publication date:
2018

Document Version
Peer reviewed version

Link to publication in Discovery Research Portal

Citation for published version (APA):
Risk factors for the development of invasive cancer in unresected ductal carcinoma in situ

Anthony J Maxwell a,b
anthony.maxwell@manchester.ac.uk
(corresponding author)

Ms Karen Clements c
karen.clements@phe.gov.uk

Ms Bridget Hilton c
bridget.hilton@phe.gov.uk

Professor David J Dodwell d
david.dodwell@nhs.net

Professor Andrew Evans e
a.z.evans@dundee.ac.uk

Ms Olive Kearins c
olive.kearins@phe.gov.uk

Professor Sarah E Pinder f
sarah.pinder@kcl.ac.uk

© 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/
Dr Jeremy Thomas
jeremy.thomas@luht.scot.nhs.uk

Dr Matthew G Wallis
matthew.wallis@addenbrookes.nhs.uk

Alastair M Thompson
AThompson1@mdanderson.org

for the Sloane Project Steering Group (see Appendix)

\(^a\) Nightingale Centre, Wythenshawe Hospital, Manchester, M23 9LT, UK
\(^b\) Division of Informatics, Imaging & Data Sciences, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
\(^c\) Screening Quality Assurance Service (Midlands and East), Public Health England, 1st Floor, 5 St Philip’s Place, Birmingham, B3 2PW, UK
\(^d\) Nuffield Department of Population Health, University of Oxford, Richard Doll Building, Old Road Campus, Oxford, OX3 7LF, UK
\(^e\) Mailbox 4, Level 6, Ninewells Hospital and Medical School, Dundee, DD1 9SY, UK
\(^f\) Cancer Studies, King's College London, 9th Floor, Innovation Hub, Comprehensive Cancer Centre, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
\(^g\) Department of Pathology, Western General Hospital, Edinburgh, EH4 2XU, UK
\(^h\) Cambridge Breast Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge & NIHR Cambridge Biomedical Research Centre, Cambridge, CB2 0QQ, UK
\(^i\) Department of Breast Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
ABSTRACT

Background: The natural history of ductal carcinoma in situ (DCIS) in contemporary practice remains uncertain. The risk factors for the development of invasive cancer in unresected DCIS are unclear.

Methods: Women diagnosed with DCIS on needle biopsy after 1997 who did not undergo surgical resection for at least one year after diagnosis were identified by breast centers and the cancer registry and outcomes were reviewed.

Results: Eighty-nine women with DCIS diagnosed 1998-2010 were identified. The median age at diagnosis was 75 (range 44-94) years with median follow-up (diagnosis to death, invasive disease or last review) of 59 (12-180) months. Twenty-nine women (33%) developed invasive breast cancer after a median interval of 45 (12-144) months. 14/29 (48%) with high grade, 10/31 (32%) with intermediate grade and 3/17 (18%) with low grade DCIS developed invasive cancer after median intervals of 38, 60 and 51 months. The cumulative incidence of invasion was significantly higher in high grade DCIS than other grades ($p=0.0016$, log-rank test). Invasion was more frequent in lesions with calcification as the predominant feature (23/50 v. 5/25; $p=0.042$) and in younger women ($p=0.0002$). Endocrine therapy was associated with a lower rate of invasive breast cancer ($p=0.048$).

Conclusions: High cytonuclear grade, mammographic microcalcification, young age and lack of endocrine therapy were risk factors for progression of DCIS to invasive cancer. Guideline-concordant surgical excision of high grade DCIS remains the
treatment of choice. Eligible women with low grade DCIS could be offered entry into active surveillance trials.

Keywords

DCIS; invasion; breast cancer; surgery; microcalcification; endocrine therapy
1. INTRODUCTION

Ductal carcinoma in situ (DCIS) is diagnosed predominantly through mammographic screening programmes and now comprises 20% or more of new breast cancers. [1] Concern has been expressed regarding possible overtreatment, [2] given the excellent long term survival of women with DCIS. [3,4] Some have suggested that “nothing is better than something” [5] and proposed long-term surveillance for estrogen receptor (ER) positive DCIS. [6,7] Trials have opened in the UK, [8] US [9] and Europe [10] to investigate active surveillance (AS) as an alternative to surgery.

While there is an historic literature describing the natural history of DCIS in small, predominantly pre-screening series of symptomatic disease, [11] there is also a growing understanding that DCIS is a heterogeneous condition. It has been reported as a common incidental finding at autopsy with a median 8.9% prevalence in a review of seven studies of women who died of unrelated causes. [12] These series, conducted over 30 years ago, used variable diagnostic criteria, compounded by the difficulty of diagnosing DCIS in tissue that is likely to have been poorly preserved. The current prevalence of undiagnosed DCIS therefore remains uncertain.

Whatever the true prevalence, surgery, radiotherapy and endocrine therapy remain the mainstays of guideline-concordant care. However, some 2.0-2.3% of patients diagnosed with DCIS in the USA choose AS for management of their disease. [4,13] Without treatment, it has been estimated that only 20-30% of DCIS will progress to invasive cancer. [11,14] Furthermore, it is not known whether long-term disease outcome is adversely impacted by awaiting progression to invasive disease.

Given this background, we sought to identify women in the recent breast screening era who had not received surgical resection for histologically diagnosed DCIS and to consider risk
factors and long-term outcomes for such women as a comparator for active surveillance trials.

2. MATERIAL AND METHODS

2.1. The West Midlands Cancer Intelligence Unit (WMCIU, now incorporated into the National Cancer Registration and Analysis Service, part of Public Health England) and the Scottish Cancer Registry identified 2505 possible eligible patients from cancer registrations of women diagnosed in England and Scotland between 1 January 1996 and 31 December 2009. These women had a needle biopsy diagnosis of DCIS but no record of subsequent surgery. Details were sent to Lead Clinicians in each hospital following completion of a confidentiality agreement. In addition, National Health Service (NHS) Breast Units and NHS Breast Screening Programme (NHSBSP) centres in the United Kingdom were invited to submit details of known patients with DCIS diagnosed from 1 January 2010 onwards who had not undergone surgical excision for at least one year following confirmed histological diagnosis on needle biopsy. Additionally, some women diagnosed between 2003 and 2012 were identified via the NHSBSP prospective cohort study of screen-detected non-invasive neoplasias, the Sloane Project (www.sloaneproject.org).

A comprehensive registration form was completed for each case by the submitting centre, including details of the imaging and clinical findings, mode of biopsy, histopathology, reasons (where known) for not performing surgery and relevant drug treatment and/or radiotherapy. A follow-up form was completed for each subsequent episode, which included one or more of clinical assessment, mammogram and ultrasound. A third form was completed for any further needle biopsy or surgery. Forms were returned to the WMCIU / Public Health England where the data were entered onto a database. Missing data on tumour characteristics together with date and cause of death were obtained from the
National Cancer Registration and Analysis Service. Data were exported to an Excel spreadsheet for analysis. Registration opened in 2012 and closed in December 2016.

2.2. Statistical methods

Comparisons of categorical data were made using the Fisher Exact test. Continuous variables were assessed by the Mann-Whitney U test. Cumulative incidence curves were compared using Kaplan-Meier analysis and the log rank test. Analysis was conducted using Stata version 14 (StataCorp LLC, College Station, Texas, USA).

3. RESULTS

3.1. Eight-nine eligible women from 31 breast units were retrospectively identified. In all cases the initial DCIS diagnoses were made between 1998 and 2010 (no eligible cases diagnosed after 2010 were submitted despite specific requests for such cases). The DCIS was screen-detected in 39 women (44%), the others symptomatic. The median patient age at diagnosis was 75 years (range 44 - 94 years). The median duration of follow-up (diagnosis to death, invasive disease or last review) was 59 months (range 12 - 180 months).

Thirty-five women (39%) were recorded as being unfit for surgery (without details of the comorbidities), 37 (42%) declined surgery, four (4%) were both unfit and declined surgery, other (unspecified) reasons were stated for eight (9%) and the reasons were unknown for five (6%) patients.

3.2. Mammographic features

The predominant mammographic features were known for 75 of the 89 women. Fifty (67%) were microcalcification, granular microcalcification being the most common. Nine of the 25
women with other predominant features (mass or deformity) had microcalcification as a
secondary feature. The median mammographic lesion size for women in whom both size
and grade were known was 34 mm (range 8 - 88) for high grade DCIS (n=23), 32 mm (5 -
126) for intermediate grade DCIS (n=23) and 15 mm (4 - 64) for low grade DCIS (n=11).

3.3. Needle biopsy
In 63 women, the initial DCIS diagnosis was made with 14-gauge (G) core needle biopsy
(CNB). Only ten women were known to have been diagnosed with vacuum-assisted biopsy
(VAB) (one each of 14G and 11G, five 10G and unknown gauge in three). In sixteen women,
the biopsy technique was classed as either ‘other’ or unknown. Of the 72 women where the
mode of guidance was known, 37 biopsies were performed under stereotaxis, 28 ultrasound
and seven freehand. No DCIS diagnoses were made solely on fine needle aspiration
cytology.

3.4. Cytonuclear grade of DCIS and presence of microinvasion
The grade of the DCIS at needle biopsy was known for 77 of the 89 women. Twenty-nine
were high, 31 intermediate and 17 low grade. Microinvasion was only recorded as definitely
present in one woman (grade unknown) and possibly present in four (one low grade, one
intermediate grade, one high grade, one grade not known). Microinvasion was specifically
stated to be absent on needle biopsy in 59 and not stated (presumed absent) in 25.

3.5. Estrogen receptor (ER) status
ER status was positive in 43 of the 48 women in whom ER was recorded (positivity was
regarded as an Allred score ≥3/8 where the score was stated, otherwise as defined by the
submitting centre).

3.6. Non-surgical treatment
Forty-four women were treated with endocrine therapy (ET) - 26 with an aromatase inhibitor, 17 with tamoxifen and one with each type sequentially. One woman treated with an aromatase inhibitor also received external beam radiotherapy. Thirty women treated with ET were recorded as having known ER positive DCIS. Thirty-five women received no ET; eight were known to have ER positive disease. Non-surgical treatment information was not available for 10 women.

3.7. Development of invasive cancer

Twenty-nine women (33%) had invasive breast cancer diagnosed histologically after a median interval of 45 months (range 12 - 144 months) following the initial DCIS diagnosis. A further five women who died had invasive breast cancer recorded as their primary cause of death on death certification but no histological confirmation of this was recorded on the cancer registry; these were not included amongst those who developed invasive cancer in this analysis as there is doubt about the accuracy of death certification. The 29 women who developed proven invasive cancer were significantly younger than the 60 who did not (median ages 67 years versus 78 years respectively; \(p=0.0002, \) Mann-Whitney U-Test). Younger women had a similar median length of follow-up to older women (age \(\leq 70 \) years v. age \(>70 \) years: 60 months v. 58 months; \(p=0.45; \) Mann-Whitney U-test), although there was a non-significantly higher proportion of younger women with high grade disease (39% v. 27%; \(p=0.26, \) Fisher exact test).

One invasive cancer was recorded as having developed in the same breast but a different quadrant to the known high grade DCIS; this has been included as a case of DCIS progression for consistency with other published studies. As far as is known, the remaining 28 invasive cancers developed at the site of the DCIS.

Comparison of DCIS grade on the initial biopsy and the predominant mammographic feature for those with and without progression to invasive cancer is shown in Table 1. After median
intervals of 38, 60 and 51 months respectively, 14/29 (48%) women with high grade DCIS, 10/31 (32%) with intermediate grade and 3/17 (18%) with low grade DCIS developed invasive cancer; grade was not known in 12. The cumulative incidence of invasive disease was significantly higher in women with high grade DCIS than in those with other grades (\(p=0.0016\), log-rank test) – Figure 1. None of the five women with microinvasion on the initial biopsy developed invasive breast cancer. All six of the grade 3 invasive cancers occurred in women with a prior diagnosis of high grade DCIS (Table 2).

Twenty-three of the 50 (46%) women with microcalcification as the predominant radiological feature developed invasion compared to only five of the 25 (20%) with another known predominant radiological feature (\(p=0.042\), Fisher exact test).

Nine of 44 women (20%) who received endocrine therapy developed invasive cancer compared to 15 of 35 (43%) who did not (\(p=0.048\), Fisher exact test).

Of the 25 known women who did not have microcalcification as the predominant feature, four of the 10 (40%) with secondary microcalcification developed invasive cancer compared to one of the 15 (7%) without microcalcification (\(p=0.12\), Fisher exact test).

3.8. Surgery

Eighteen women ultimately underwent breast surgery, seventeen for invasive cancer: Thirteen had mastectomy and four wide local excision. One woman had a wide local excision for DCIS 12 months after initial diagnosis.

3.9. Deaths

Forty-eight women died. Eleven of these had biopsy-proven invasive cancer, of whom seven had a primary certified cause of death of breast cancer.
For women that developed invasive cancer the median interval from diagnosis to death was 62 months for all-cause deaths and 62 months for deaths from breast cancer. For those that did not develop invasive cancer the median interval was 57 months ($p=0.28$, Mann-Whitney U-Test).

Among the 29 women with invasive cancer, there was no significant difference between the age at diagnosis of DCIS for those who died compared with the women still alive at census (median ages 68 years v. 66 years respectively; $p=0.62$, Mann-Whitney U-Test). However, of the women who did not develop invasive cancer, those who died were significantly older at diagnosis than those who remained alive (median ages 83 years v. 69 years; $p=0.0001$, Mann-Whitney U-Test).

4. DISCUSSION

This retrospective longitudinal cohort study of women diagnosed with DCIS on core needle biopsy who did not undergo surgical excision for at least one year reviewed 89 eligible women. Progression to invasive breast cancer was more frequent in a short time frame for those with initial DCIS of high cytonuclear grade. The Kaplan-Meier analysis suggests that approximately 50% of women with high grade DCIS will develop invasive cancer within five years but fewer than 25% of those with lower grade DCIS will develop invasion in the same time frame. In particular, low grade DCIS appears to progress slowly to invasive cancer. For approximately one in seven of the women who died, the cause of death was attributed to breast cancer, with a median survival in these women of over five years from DCIS diagnosis.

The tendency for high grade DCIS to be associated with grade 3 invasive cancer and the significantly higher cumulative incidence of invasion suggest that the biological behaviour is
reflected in the histopathological appearances of the DCIS. This effect of grade is similar to that seen for DCIS recurrence following surgical resection. [15] Our findings emphasise the importance of early detection and treatment of women with high grade DCIS in order to prevent the development of high grade invasive cancer.

Even with the confounding factor of a slightly higher proportion of high grade disease in the younger (≤70 years) women, the rate of progression to invasion does appear to be higher in younger women. This is in keeping with the known higher local recurrence rate in younger women following surgical resection of DCIS. [1,16,17]

The apparent association of DCIS microcalcification with the development of invasive disease has not been previously reported, although microcalcification has been shown to be associated with a higher risk of non-invasive recurrence. [18] In addition, there have been some suggestions that invasive cancers with microcalcification have a worse prognosis than non-calcified lesions, [19-21] although this is not a consistent finding [22] and may be due to confounding factors. [23]

The effect of endocrine therapy in reducing progression of DCIS to invasive cancer noted here is consistent with the findings of trials of adjuvant endocrine therapy following surgery for DCIS. The UK/ANZ DCIS trial [24] and the NSABP B-24 study [25] demonstrated a significant reduction in the frequency of DCIS recurrence with tamoxifen, although the UK/ANZ study did not show a significant reduction in invasive recurrence. Anastrozole has subsequently been demonstrated to be at least as effective as tamoxifen in this setting. [26,27]

The contribution of DCIS detection at screening to reduction of breast cancer mortality has long been debated. A review of prior mammograms of women with incident screen-detected cancers suggested that undiagnosed calcified DCIS progresses to invasive cancer within the
three-year period between screens in a significant number of women, [28] but only recently have data been published that demonstrate that high DCIS detection rates at screening are associated with a reduction in the incidence of interval cancers. [29]

Sagara et al [4] reported outcomes of 57,222 women with DCIS from the SEER (Surveillance, Epidemiology and End Results) database, of whom 1169 (2%) had not undergone surgical resection. Although the development of invasive disease was not specifically examined, for women with high and intermediate grade DCIS there was a significant difference in 10-year breast cancer specific survival between those who underwent surgery and those who did not (98.4% v. 90.5%, p<0.001, for high grade; 98.6% v. 94.6%, p<0.001, for intermediate grade disease, respectively). Surgery was not, however, associated with a survival difference in women with low grade DCIS (98.6% v. 98.8%; P=0.95). A series following 14 women with ER positive DCIS who underwent endocrine therapy as an alternative to immediate surgery [6] reported that eight subsequently had surgery after a median follow-up of 28 months; five had with stage I invasive ductal cancers. Although there were only 17 women with low grade DCIS in the present study, eight died of non-breast cancer related causes and the findings suggest that low grade DCIS is a relatively indolent disease. Of the three women who did develop invasion after intervals of 46, 51 and 137 months, one of the invasive cancers was of histological grade 1, one grade 2 and the other was of unknown grade. These findings, together with the demonstrated lack of survival benefit from surgery, [4] also support ongoing studies of active surveillance as an alternative to surgery in low risk DCIS. [8-10]

To our knowledge, this is the largest study reporting the progression of histologically confirmed unresected DCIS to invasive breast cancer. Diagnostic and treatment data were obtained from clinicians managing the women, supplemented by cancer registry data, and consequently data completeness is relatively high. Although variability in the application of diagnostic and grading criteria to DCIS by histopathologists is well recognised, [30] the
mandatory participation in a national quality assurance programme by all UK pathologists working in breast screening [31] provides some reassurance of uniformity of grading.

This study has some limitations. Despite the large number of women with a DCIS diagnosis but no record of surgery on the cancer registries (2505 (5%) potentially eligible out of a total of 49,567 DCIS registrations in the period 1996-2009), only a relatively small number of patients (0.2%) had data submitted by the treating centres, with potential for selection bias. The proportion of women diagnosed with DCIS in the UK who do not undergo surgery is, therefore, unknown, but appears similar to the 2.0 - 2.3% reported in the USA. [4,13] Because of the nature of the study population (with regard to patient age and associated co-morbidities), many of the women died during the course of the study, substantially limiting the duration of follow-up. Furthermore, there were relatively few younger women with screen-detected disease. The majority of women in the study underwent conventional core needle biopsy rather than vacuum-assisted biopsy for diagnosis. CNB is known to underestimate the coexistence of invasive disease in DCIS in approximately 20% of cases. [32-34] Nonetheless, the study still allows a ‘real world’ approach to the outcome of DCIS diagnosed predominantly at CNB to be determined. Finally, due to the relatively small number of subjects, multivariate analysis was not possible, thus confounding factors cannot be excluded.

5. CONCLUSIONS

High cytonuclear grade of DCIS, mammographic microcalcification, young age and lack of endocrine therapy were significant risk factors for progression to invasive breast cancer after a median interval of 45 months in this group of women diagnosed with DCIS on needle biopsy but who did not undergo surgical resection for at least one year. These findings
suggest that complete surgical excision of high grade DCIS should continue to be undertaken as per current standard of care protocols, but that eligible women with low grade DCIS could be offered entry into active surveillance trials.
Figure 1. Cumulative incidence of invasive cancer by DCIS grade.
Kaplan-Meier chart showing the cumulative incidence of invasive cancer from time of DCIS diagnosis by cytonuclear grade of DCIS.
ETHICAL APPROVAL

This study did not require ethical approval, as it is an audit using data obtained as part of usual patient care. UK cancer registries have approval under Section 251 of the UK National Health Service Act 2006 to collect all diagnostic and treatment information for cancer patients without the patient's implicit consent.

ACKNOWLEDGEMENTS

The authors would like to thank all the clinicians who submitted patient data.
Dr Elaine Harness, Division of Informatics Imaging & Data Sciences, School of Health Sciences, Faculty of Biology Medicine and Health, University of Manchester, UK provided valuable assistance with the statistical analysis.
The contribution of Mr Hugh M Bishop, former Steering Group Chair, to this study is acknowledged.
The authors declare no conflicts of interest.

FUNDING

The study received no specific funding. The data were collated, maintained and quality assured by the Screening Quality Assurance Service and the National Cancer Registration and Analysis Service, which are part of Public Health England, a publicly funded executive agency of the UK Department of Health, established in 2013. Prior to this, the data were collected, maintained and quality assured by the publicly funded West Midlands Cancer Intelligence Unit.
DD is supported by the University of Oxford, Cancer Research UK (grant C8225/A21133), the Medical Research Council and the British Heart Foundation.
APPENDIX

Members of the Sloane Project Steering Group

The current members of the Sloane Project Steering Group are:

Professor Alastair Thompson (Chair of the Sloane Project Steering Group)
Professor of Surgery, University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA

Mrs Karen Clements
National Audit Project Senior QA Officer, Screening QA Service (Midlands and East), Public Health England, Birmingham, UK

Dr Hilary Dobson
Consultant Radiologist, West of Scotland Breast Screening Programme, Glasgow, UK

Professor David Dodwell
Professor of Clinical Oncology, St James's Institute of Oncology, Leeds, UK

Professor Andy Evans
Professor of Breast Imaging, Ninewells Hospital and Medical School, Dundee, UK

Professor Andy Hanby
Professor of Breast Cancer Pathology, St James's University Hospital, Leeds, UK

Mrs Bridget Hilton
National Audit Project Senior QA Officer, Screening QA Service (Midlands and East), Public Health England, Birmingham, UK
Mrs Olive Kearins
Head of QA, Screening QA Service (Midlands and East), Public Health England, Birmingham, UK

Dr Gill Lawrence
Specialist Audit Advisor, UK

Dr Anthony Maxwell
Consultant Radiologist, Nightingale Centre, University Hospital of South Manchester, Manchester, UK

Professor Sarah Pinder
Professor of Breast Pathology, Guys and St Thomas’ Hospitals, London

Dr Elinor Sawyer
BRC Clinical Research Consultant in Clinical Oncology, Guys Hospital, London, UK

Mr Mark Sibbering
Consultant Surgeon, Derby City General Hospital, Derby, UK

Professor Valerie Speirs
Professor of Experimental Pathology and Oncology, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK

Dr Jeremy Thomas
Consultant Pathologist, Western General Hospital, Edinburgh, UK

Professor Ian Tomlinson
Professor of Molecular and Population Genetics, Wellcome Trust Centre for Human Genetics, Oxford, UK

Professor Graham Ball
Reader in Bioinformatics, Nottingham Trent University, Nottingham, UK

Dr Matthew Wallis
Consultant Radiologist, Addenbrooke’s Hospital, Cambridge, UK

Ms Maggie Wilcox
Patient Advocate, Independent Cancer Patients' Voice, UK
REFERENCES

