Translating clinical trials into improved real-world management of pain
Gilron, Ian; Blyth, Fiona M.; Smith, Blair

Published in:
Pain

DOI:
10.1097/j.pain.0000000000001684

Publication date:
2020

Document Version
Peer reviewed version

Link to publication in Discovery Research Portal

Citation for published version (APA):
<table>
<thead>
<tr>
<th>Manuscript Number:</th>
<th>PAIN-D-19-00379R2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full Title:</td>
<td>Translating clinical trials into improved real-world management of pain: Convergence of translational, population-based and primary care research</td>
</tr>
<tr>
<td>Article Type:</td>
<td>Topical Review (INVITED ONLY)</td>
</tr>
<tr>
<td>Keywords:</td>
<td>Clinical trials; population health; Primary care; chronic pain; implementation science</td>
</tr>
</tbody>
</table>
| Corresponding Author: | Ian Gilron, MD, MSc, FRCPC
Queen's University
Kingston, Ontario CANADA |
| Corresponding Author's Institution: | Queen's University |
| First Author: | Ian Gilron, MD, MSc, FRCPC |
| Order of Authors: | Ian Gilron, MD, MSc, FRCPC
Fiona Blyth, PhD, MBBS
Blair H Smith, MD |
| Additional Information: | |
| Question | Response |
| Have you posted this manuscript on a preprint server (e.g., arXiv.org, BioXriv, PeerJ Preprints)? | No |
Translating clinical trials into improved real-world management of pain: Convergence of translational, population-based and primary care research

Ian Gilron, MD, MSc, FRCPC¹, Fiona Blyth, PhD, MBBS², Blair H Smith, MD³

¹Department of Anesthesiology & Perioperative Medicine, Queen’s University and Kingston Health Sciences Centre, Kingston, Ontario, Canada
²The University of Sydney, Centre for Education and Research on Ageing, Sydney, Australia
³Division of Population Health and Genomics, School of Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, DD2 4BF, Scotland

Corresponding author:
Ian Gilron, MD, MSc, FRCPC
Director of Clinical Pain Research
Professor of Anesthesiology & Perioperative Medicine,
Biomedical & Molecular Sciences, and Centre for Neuroscience Studies
Queen’s University and
Kingston Health Sciences Centre

Number of figures: 3
Number of tables: 0
Word count: 2,717
References: 101
1. Introduction

Many strategies may guide improved pain treatment. Among these are: 1) translational research (e.g. clinical trials of novel therapies emerging from basic science); 2) population research (e.g. identify pain burden-pain care health service gaps and describe treatment harms); and, 3) primary care research (e.g. describe patient presentation/referral patterns, treatment preferences/goals, develop patient care models/pathways). As in Figure 1, convergence of these strategies can help determine who needs treatment, whether treatments are effective, and how to administer treatments.

Evidence from randomized controlled trials (RCTs) guides early implementation of new treatments and represents the translational link between preclinical research and patient care [25,30,55,65,99]. Controlled phase 1, 2 and 3 RCTs demonstrate safety and efficacy to justify marketing approval of new treatments [23,34,36,98,100]. Knowledge synthesis of multiple RCTs of a treatment, e.g. systematic reviews and meta-analyses, facilitates evidence-based clinical decisions [1,59,64]. “Evidence-based medicine” facilitates treatment selection based on consideration of all available safety and efficacy evidence, sometimes including non-controlled studies and expert opinion [29,40,43,80].

The narrow focus of phase 1-3 RCTs necessitates additional, larger, phase 4 post-marketing studies for safety and efficacy evidence in broader populations [11,75]. However, even phase 4 studies have limitations in generalizing to widespread use, and post-marketing recognition of problems with anti-inflammatory drugs [47,63] and opioids [21,56] has emphasized important gaps between RCTs and real-world practice [62]. Furthermore, statistically significant efficacy (e.g. treatment-placebo difference) in RCTs sometimes translates to a questionably meaningful effect [24,40,73]. Such gaps are related to differences in RCT, versus real-world, conditions and emphasize the need for pharmacoepidemiologic, database-driven and other large cohort population research [38,39,82].

Most patient encounters involve primary care providers [20,86,87,94] and challenges in this setting include recognition/prioritization of chronic pain among other competing clinical problems
Further challenges include identifying safe, cost-effective and evidence-based multimodal interventions [17,31,66] and revising practices in response to emerging evidence [41]. As in Figure 2, evaluating a new treatment evolves through stages of translational, population-based and primary care research. This article reviews challenges to implementation of pain treatments that may be overcome with closer integration of 1) population-based, 2) translational, and 3) real-world, primary care research.

2. Population-based research on chronic pain burden and impact of pain treatment

Chronic pain is a major contributor to the global health burden of non-fatal disease [9,95]. Pain treatment trials should therefore be implemented as part of a complex set of strategies to prevent and control the population impact of pain. Thus, RCTs can inform both chronic pain prevention but also chronic pain burden reduction. Complementary to RCTs, pharmacoepidemiology – the study of the use and effects of drugs in large numbers of people [90] – is characterized by various epidemiological methods, study designs, and data sources to examine patterns of medication use and associated population impact. This impact is broadly defined to include benefits and the harms of medicine use across different population levels (individuals, communities, and population as a whole).

Also, a population perspective may identify evidence-burden gaps in existing trials, and future questions where evidence is most needed. For example, chronic pain prevalence is associated with ageing and analgesic use is common in older (e.g. >65 years old) patients [49], yet this population is commonly excluded from RCTs [6]. Another critical gap in the generalizability of pain RCTs is the recognition that a substantial number of people with chronic pain have multiple pain etiologies and anatomical pain sites, as well as other coexisting multimorbidities [74] that often exclude them from classical RCTs with tight exclusion criteria. These well-recognized problems for RCTs – in many areas – reveal a limited understanding of drug-drug, and drug-disease interactions relevant for older, multimorbid populations on multiple medications and require future study.
As evidence of an important evidence-burden gap, a recent analysis compared registered RCTs within 27 disease groupings against burden of disease data across seven global regions [3]. This study found a widespread mismatch between trials and disease burden for musculoskeletal conditions in all income level strata. Furthermore, other differences – with respect to pain prevalence and treatment – in sex/gender [51], race/ethnicity [14;33] and comorbidities [74] suggest other important evidence-burden gaps in real-world pain treatment and research.

Thus, evidence suggests a mismatch between trials and population pain burden, and that closer alignment between RCTs and population-focused studies would better contribute to chronic pain prevention and control at a population level.

3. Methodology of translational RCTs and barriers to their implementation into clinical practice

A prototypical design for a phase 3 trial involves parallel randomization of participants to two or more treatment arms including: 1) the study treatment, 2) a placebo control, and 3) a different dose of the study treatment, or a different treatment comparator [25,96]. A major trial design focus is internal validity (e.g. precision and accuracy), and minimization of bias, requiring random allocation of participants to treatment group, blinding of participants and researchers to treatment allocation, and other important factors including sample size, treatment duration, and, duration/completeness of outcome follow-up [1,48].

Broadly, RCTs, which are diverse in design and purpose, collectively strive for internal validity (e.g. assay sensitivity), external validity (e.g. generalizability), risk-benefit evaluation and cost-benefit evaluation (Figure 3). However, RCTs vary depending on the purpose and research question. An important dichotomy articulated by Schwartz and Lellouch, was between an ‘explanatory’ trial – aiming to demonstrate a biological principle – versus a ‘pragmatic’ trial – aiming to guide treatment choices [83]. This dichotomy remains relevant with divergent purposes such as: 1) industry-sponsored RCTs to demonstrate safety and efficacy to support marketing a new treatment; and 2) ‘academic’ RCTs of available treatments to inform best practices. Explanatory trials – commonly product development trials scrutinized by regulatory agencies – focus on feasibility, internal validity and assay sensitivity (ability to distinguish an effective treatment from
a less effective or ineffective treatment) [26]. Pragmatically oriented trials emphasize clinical importance of outcomes and treatment differences as well as generalizability (external validity) [24,76,77,97]. In new treatment development, ‘phase 3’, confirmatory trials inform the decision to market the product [23,34,36,98]. Fairly recently, the PRECIS-2 tool was validated for the purpose of guiding the design of clinical trials along a continuum from “very explanatory” to “very pragmatic” [61]. In this paper we mostly focus on RCTs of pharmacological pain therapies, as this is where most of the evidence currently exists. However, the principles and challenges discussed generally also apply to trials of nonpharmacological approaches, including multimodal, interdisciplinary management [52;53], which generally require more complex study designs [8;57].

RCTs need a study population sufficiently homogeneous to facilitate recruitment efficiency and maximize assay sensitivity; yet sufficiently broad and generalizable. Barriers to RCT generalizability [76,77] include trials conducted in populations with different socio-demographic characteristics different from the target healthcare setting, , or in healthcare systems with different access or health insurance criteria. Further, the use of participant selection criteria that exclude important patient subgroups or comorbidities limits applicability of findings. Major psychiatric disease [93], cognitive dysfunction [81], and substance use disorder [70] are some examples of patients that might be problematic in a trial (e.g. risk of unreliable/incomplete data), but who would benefit from relevant evidence in clinical practice. Thus, consideration is needed on how to conduct trials in complex and high pain burden patient populations [28]. Here, there may be a role for pragmatic trials, conducted in real-world practice, with populations that represent those at whom the intervention is targeted (e.g. co-existing conditions, primary care setting). Some of these issues of external validity and applicability to real-world practice may be addressed with relatively novel pragmatic trial designs [32,78] such as: 1) a cluster randomised trial design whereby study interventions are randomized at the level of the practitioner, or healthcare institution – instead of at the level of the patient [20]; 2) an enriched enrolment randomised withdrawal design, which include only those who tolerate and respond to the treatment [37;68]; and, 3) a stepped wedge design – a cluster design whereby all participants eventually receive the intervention [46].
Selection of trial outcome measures is also critical [22,35,50,91,92]. In 2003, the “IMMPACT” group of authors (immpact.org) with expertise in pain research, drug regulation and the pain therapeutics industry recommended the following core outcome domains for pain trials: pain, physical and emotional function, treatment satisfaction, participant disposition through the trial (e.g. early withdrawal due to adverse effects) and treatment-emergent adverse events [22,91]. Since most novel pain therapies have demonstrated efficacy in preclinical models of nociception and pain [34], it is logical that pain intensity be used as a primary outcome measure. However, in practice, pain management does not always result in substantial reductions in pain intensity. This may be due to limited treatment efficacy, dose-limiting treatment side effects, or analgesia-related increases in physical activity that subsequently increase pain. Despite this, pain management may result in other benefits including improved coping, physical function, mood and sleep even if pain intensity reduction is not always apparent. In this regard, it is interesting to note recent evidence suggesting that the use of a composite outcome measure of both pain intensity and physical function may facilitate improved assay sensitivity of chronic pain RCTs [52] and so, perhaps trials need not rely exclusively on pain intensity as a primary outcome measure. Thus, evidence from trials, reportedly ‘positive’ for the primary outcome of pain intensity, should be carefully evaluated with respect to other secondary outcomes (e.g. function, mood, sleep) [71] and important adverse effects to put the treatment in appropriate clinical context for real-world practice [73]. In terms of treatment safety, evidence emphasizes the need to improve assessment and reporting of treatment-emergent adverse effects in pain trials [88,89], and further, to consider emerging population-based evidence of potential treatment-related harms of currently used pain treatments [21,47,56,63].

Rigorous systematic review and meta-analysis is necessary to synthesize evidence from multiple RCTs [64]. A commonly used metric in pain trial meta-analyses is the “number-needed-to-treat” (NNT). NNT is the inverse of the absolute risk reduction in a group of trials, and represents the average number of individuals who need to be treated in order for one to obtain pain relief (e.g. 30% pain reduction). However, this hides a wide range of individual variation in responses: a high NNT could represent an intervention with which every recipient obtains just a little relief, or one that provides no relief for most but excellent relief for few. For example, pregabalin demonstrated
an NNT of 7.2 for neuropathic pain in a recent systematic review [31], but Moore et al [67] demonstrated its use in a trial involving 200 people with fibromyalgia in which the range of relief obtained was 0 to almost 100%. Their message was, “Expect analgesic failure; pursue analgesic success” – in other words, even when a drug’s NNT, based on high quality trials, is high, there is still a chance of success with its use in individuals, so long as careful follow-up and early review empowers its cessation in the event of insufficient pain relief [67].

Further translation of trial-based evidence into real-world practice requires input from multiple disciplines as proposed by the GRADE (Grading of Recommendations Assessment, Development, and Evaluation) process. GRADE integrates quality of evidence, balance between beneficial and adverse effects, consideration of patient/public values and preferences and related use of resources [4,5,42]. For example, the IASP Neuropathic Pain Special Interest Group conducted a review of neuropathic pain pharmacotherapy involving systematic review and meta-analysis of treatment-specific trials, GRADE assessment and, ultimately, treatment recommendations [31].

4. Implementation of research evidence into real-world, primary care, chronic pain management and research strategies

Due to the need for a comprehensive assessment and differential diagnosis of a presenting pain complaint, primary care physicians are commonly one of the first healthcare providers to evaluate an emerging chronic pain condition and to initiate early treatment approaches. Primary care has been defined as ‘first-contact, accessible, continued, comprehensive and coordinated care’ [101]. It is characterized by numerous, brief appointments between patients and multi-disciplinary healthcare professionals led by general practitioners. A primary care consultation (typically 10 minutes) is multi-factorial and restricted by the short time available [72]. Thus, ready access to evidence about treatment interventions is essential to effective primary care – particularly relevant to pain management, which accounts for 22% to 50% of primary care consultations (while only 0.3% to 2% with chronic pain are referred to specialist pain clinics) [86]. Recognition of time constraints and patient complexity has encouraged a medical model with prescribed medicines, which are straightforward to implement, and meet the apparent needs or expectations of both
patient and professional [15]. However, it has been recently noted that an emphasis on prescribed medicines may preclude alternative or complementary non-pharmaceutical approaches such as self-management, physical, and psychological therapies [85] that are more time intensive. This has led to the introduction and study of alternative care models [60] including: 1) ‘stepped care’ – provision of condition-specific, guideline-based treatments with a progression to more complex or invasive intervention as required [27]; 2) ‘stratified care’ – provision of treatment intensiveness and comprehensiveness according to patient factors (e.g. low, medium and high risk) [7]; and 3) ‘matched’ care – individualizing specific treatments to patient factors that predict need or favourable response [2]. Furthermore, the optimal implementation of such novel health care models require adoption, scalability and sustainability at a health system level [10].

Although efforts to improve implementation of, and access to, nonpharmacological pain treatments are expanding, the current reality is that analgesic drug prescribing remains one of the most common examples of pain management in primary care settings. Safe and effective analgesic prescribing requires careful discussion and frequent review, often with slow titration to appropriate effective and tolerated doses. This is difficult to achieve with traditional physician-led primary care. Alternative models of care are therefore required, including non-medical prescribing, nurse- or pharmacist-led pain clinics, and shared decision support systems. “Independent Prescribing” is available in the UK, with training and qualifications, to non-physician health professionals [19]. With required qualifications, they can prescribe medicines within their level of expertise. One study found that pain was the second most prevalent area for which nurses prescribed [18]. Studies of nurse-led, or pharmacist-led, pain clinics reported efficient and effective results and favourable treatment outcomes [12,44,45,58,79]. Building on this, Scotland has developed a national prescribing strategy that combines evidence with results of locally implemented prescribing approaches [69]. Decisions based on risk-benefit considerations can be facilitated by Clinical Decision Support Systems that follow algorithms integrated into healthcare computer systems and patient-facing apps. These under development for chronic pain [84].

As alluded to above, lessons learned from the opioid crisis have emphasized the potential value of expanding implementation and access to nondrug treatments for pain as well as pain management team leadership to also involve a broader range of health professionals. In fact,
interdisciplinary pain treatment teams led by psychologists and other, non-physician, health professionals have been successful for many years in some places, and emerging evidence suggests that chronic pain patients treated at facilities that provide nondrug pain treatments are less likely to initiate long term opioid therapy [13]. Thus, with a growing impetus to pursue nondrug pain treatments, such as various physical and psychological interventions, the synthesis and implementation of RCT evidence of these interventions is similarly needed [16; 54].

5. Conclusion
This review highlights barriers to the implementation of RCT evidence into patient care. At a population level, continued efforts to identify various populations with high pain burden should be coupled with new RCTs involving comparable, high pain burden, populations. Given the short duration of RCTs, more pharmacoepidemiologic studies are needed to describe harms with long-term, real-world, use of pain treatments, often used differently than they were in RCTs.

Challenges of treating pain in patients with comorbid conditions (e.g. depression, substance abuse, dementia) – that are commonly excluded from traditional RCTs – suggest a need for trials that feasibly include such complex patients. Other future improvements require RCTs to focus on populations with greater pain burden through careful attention to patient factors such as sex/gender, age, race/ethnicity, socioeconomic status, geographical location and access to healthcare.

Implementing trial evidence into primary care requires expansion of resources, including a broader range of health professionals, to effectively replicate treatment conditions followed in RCTs. Further implementation success requires synthesis and translation of evidence into treatment guidelines, patient care pathways and community-oriented treatment strategies in the context of multimodal therapy.
Continued collaboration between population science, RCTs and primary care research will promote more effective implementation of emerging pain therapies to ultimately improve pain management patient outcomes.

Conflicts of interest statement

FB has no conflicts to declare. IG has received support from Biogen, Adynxx, TARIS Biomedical, AstraZeneca, Pfizer, and Johnson and Johnson and has received grants from the Canadian Institutes of Health Research, Physicians’ Services Incorporated Foundation, and Queen’s University. BHS has no conflicts to declare.

Acknowledgements

This topical review is based on a Topical Workshop presented by Drs. Gilron, Blyth and Smith at the IASP 17th World Congress on Pain in Boston, USA, September 2018. This work was supported, in part, by the Canadian Institutes of Health Research Strategy on Patient-Oriented Research Chronic Pain Network.
References

Guyatt GH, Sackett DL, Cook DJ. Users' guides to the medical literature. II. How to use an article about therapy or prevention. B. What were the results and will they help me in caring for my patients? Evidence-Based Medicine Working Group. JAMA. 1994 Jan 5;271(1):59-63.

[76] Rothwell PM. External validity of randomised controlled trials: "to whom do the results of this trial apply?". Lancet 2005;365:82-93.

Figure 1: Convergent input of translational, population-based, and primary care research into the development of chronic pain treatments
Figure 2: Evolution of the implementation of pain treatments in primary care

- **new treatment, translational research:**
 - preclinical \gg phase 1-3 clinical trials
 - OR
 - older agent, repositioned for pain treatment

- **new pain treatment,**
 - early implementation in primary care,
 - early evidence-based guidelines

- **postmarketing clinical trials,**
 - pragmatic trials
 - (broader populations, real-world conditions)

- **large scale population-based studies**
 - (infrequent adverse effects, adverse interactions with other treatments)

- **revised treatment guidelines**
 & strategies that incorporate evidence from real-world research
Figure 3: Concurrent goals of clinical trials in the evaluation of chronic pain treatments

- **Internal validity, Assay sensitivity** (minimal chance of ‘false negative’ or ‘false positive’ trial)
- **External validity** (generalizability of trial results to broader population)
- **Risk-benefit** (acceptability of adverse effect profile versus magnitude of benefit)
- **Cost-benefit** (acceptability of treatment cost versus magnitude of benefit)

Are pain treatments effective?
Copyright Transfer Agreement--REQUIRED from ALL authors of submission at revision stage

Click here to access/download

Copyright Transfer Agreement--REQUIRED from ALL authors of submission at revision stage
PAIN_eCopyright_Transfer_Form-convergence-ig.pdf
Copyright Transfer Agreement--REQUIRED from ALL authors of submission at revision stage

Click here to access/download

Copyright Transfer Agreement--REQUIRED from ALL authors of submission at revision stage
PAIN_eCopyright_Transfer_Form Blyth.pdf
Copyright Transfer Agreement--REQUIRED from ALL authors of submission at revision stage

Click here to access/download

Copyright Transfer Agreement--REQUIRED from ALL authors of submission at revision stage
PAIN_eCopyright_Transfer_Form BHS.pdf
ICMJE Conflict of Interest Form--REQUIRED from ALL authors of
submission at revision stage

To view the full contents of this document, you need a later version of the PDF viewer. You can upgrade
to the latest version of Adobe Reader from www.adobe.com/products/acrobat/readstep2.html

For further support, go to www.adobe.com/support/products/acrreader.html
Please wait...

If this message is not eventually replaced by the proper contents of the document, your PDF viewer may not be able to display this type of document.

You can upgrade to the latest version of Adobe Reader for Windows®, Mac, or Linux® by visiting http://www.adobe.com/go/reader_download.

For more assistance with Adobe Reader visit http://www.adobe.com/go/acrreader.

Windows is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other countries. Mac is a trademark of Apple Inc., registered in the United States and other countries. Linux is the registered trademark of Linus Torvalds in the U.S. and other countries.