Resistance Heterogeneity and Small Airway Asthma Phenotype

Lipworth, Brian; Kuo, Chris

Published in:
American Journal of Respiratory and Critical Care Medicine

DOI:
10.1164/rccm.201905-1060LE
10.1164/rccm.201905-1060LE

Publication date:
2019

 Licence:
CC BY-NC-ND

Document Version
Publisher's PDF, also known as Version of record

Link to publication in Discovery Research Portal

Citation for published version (APA):
contains 149 modifiers (or noncoding variants) and 19 moderate (or missense) and two low-impact (or synonymous) SNPs. Polyphen (5) and Sorting Intolerant From Tolerant (6) prediction scores, presented in the network table as attributes, were also consulted to elucidate the deleteriousness of the 19 missense variants. The Polyphen resulted in five probably damaging (rs141159367, rs1051740, rs10499052, rs146043252, and rs28929474) and two possibly damaging (rs1048943 and rs181206) SNPs. Sorting Intolerant from Tolerant indicated that only three (rs1051740, rs10499052, and rs146043252) of the seven SNPs identified by Polyphen are predicted to be deleterious. Because of this discrepancy, we considered the more extensive list. In Figure 1, a SNP–gene–pathway subnetwork is presented, highlighting only the connections related to the seven genes carrying the deleterious missense SNPs.

The variant effect predictor analysis showed that the vast majority of the SNPs associated with COPD are modifiers. Nineteen of the 181 variants were missense SNPs mutations. Of these, seven SNPs (rs10499052, rs28929474, rs181206, rs1048943, rs1051740, rs141159367, and rs146043252) showed alterations predicted to be deleterious in the associated proteins for SLC22A11 (solute carrier family 22 member 11), AK9 (adenylate kinase 9), SERPINA1 (serpin family A member 1), IL27, CYP1A1 (cytochrome P450 family 1 subfamily A member), EPHX1 (epoxide hydrolase 1), and TESMIN (testis-expressed metallothionein-like protein), respectively. Figure 1 displays the interactions of those seven genes with the missense SNPs and pathways. Interestingly, all but two of the deleterious alterations, located in AK9 and TESMIN, are in genes that are either directly or indirectly involved in inflammatory pathways. The AK9 gene mutation is involved in cellular metabolic processes and in extrapulmonary tissues (7), whereas TESMIN is involved in heavy metal ion binding and sequestering.

IL27 and SERPINA1 encode proteins directly involved in inflammation. The leucine to proline substitution caused by rs181206 (IL27) was predicted to be possibly damaging by Polyphen, indicating a strong change in protein structure. Proline is known to have an exceptional conformational rigidity, often causing structural changes. SERPINA1 mutations account for around 2% of all COPD cases (8); however, the PiMZ variant associated with this gene was only observed in crude estimates and disappeared after adjusting for smoking (9). Two deleterious SNPs, rs1048943 and rs1051740, associated with CYP1A1 and EPHX1, are involved in detoxification pathways and, under some circumstances, may be directly linked, as in benzo(a)pyrene-metabolism (WikiPathways identifier: WP696).

References


Copyright © 2019 by the American Thoracic Society

Author disclosures

Sarah Mount, M.Sc.*
Elisa Cirillo, Ph.D.*
Kelly Stewart, Ph.D.
Susan Coort, Ph.D.
Chris T. Eevelo, Ph.D.
Anke Wesselius, Ph.D.
Maurice P. Zeegers, Ph.D.
Annemie M. W. J. Schols, Ph.D.†
Maastricht University Medical Centre Maastricht, the Netherlands

ORCID IDs: 0000-0002-3197-0574 (S.M.); 0000-0002-0241-7833 (E.C.);
0000-0002-4451-6012 (K.S.); 0000-0003-1224-9690 (S.C.);
0000-0002-5301-3142 (C.T.E.); 0000-0003-4474-9665 (A.W.);
0000-0002-2387-083X (M.P.Z.); 0000-0001-9878-0428 (A.M.W.J.S.).

*These authors contributed equally/shared first authorship.
†Corresponding author (e-mail: a.schols@maastrichtuniversity.nl).

To the Editor:

We read with interest the elegant modeling data of Foy and colleagues (1), who reported a 40% narrowing of small airways was associated with clinically relevant alterations in asthma control and quality of life. Such effects were commensurate with observed responses to biologics on the frequency-dependent heterogeneity of the resistance component of respiratory impedance measured by impulse oscillometry (IOS), where the mean pooled effect on resistance at 5 Hz (R5) − resistance at 20 Hz (R20) was −0.04 (95% confidence interval [CI], −0.03 to −0.05) (kPa/L) · s.

This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/). For commercial usage and reprints, please contact Diane Gern (dgern@thoracic.org). Originally Published in Press as DOI: 10.1164/rccm.201905-1060LE on July 24, 2019
To further put these changes into clinical context, we previously measured IOS in response to propranolol-induced bronchoconstriction in patients with asthma where there was a 0.05 (kPa/L) · s increase in R5 − R20 corresponding to a 104.1% (95% CI, 22.6 to 185.6%) change, along with a subsequent bronchodilator response to salbutamol of −0.17 (kPa/L) · s and −115.6% (95% CI, −55.6% to −175.7%), respectively (2). Moreover, in a health informatics evaluation of 302 patients with asthma, there was a 45% increased risk for worse control in relation to oral corticosteroid use, and 47% in relation to inhaled albuterol use measured during a 2-year period when comparing cohorts of patients with asthma, using a cutoff value for R5 − R20 of less than or greater than 0.07 (kPa/L) · s (3).

Hence, the small airway asthma phenotype reflected by abnormal R5 − R20 is associated with poorer control. We believe the findings of Foy and colleagues (1) are important in further validating the use of IOS in determining effects of treatments on small airways of patients with asthma.

References

Copyright © 2019 by the American Thoracic Society

Copyright © 2019 by the American Thoracic Society