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Multiscale Moving Boundary Modelling of Cancer Interactions with a Fusogenic
Oncolytic Virus: the Impact of Syncytia Dynamics

Talal Alzahrani, Raluca Eftimie, Dumitru Trucu∗

Division of Mathematics, University of Dundee, Dundee, DD1 4HN

Abstract

Oncolytic viral therapies is one of the new promising strategies against cancer, due to the ability of oncolytic viruses
to specifically replicate inside cancer cells and kill them. There is increasing evidence that a sub-class of viruses that
contain fusion proteins (triggering the formation of syncytia) can lead to better oncolytic results. Since the details of
the tumour dynamics following syncytia formation are not fully understood, in this study we consider a modelling and
computational approach to describe the effect of a fusogenic oncolytic virus on the multiscale dynamics of a spreading
tumour. We show that for the baseline parameter values considered here, small syncytia diffusion coefficient leads to
tumour reduction. Further tumour reduction can be obtained when we increase the probability of syncytia formation, in
the context of different viral burst rates and death rates for individually-infected tumour cells and syncytia structures.
Finally, we show that the type of syncytia diffusion coefficient (i.e., constant or density dependent) also impacts the
outcome of the oncolytic viral therapy.

Keywords: multiscale cancer modelling, tumour–oncolytic virus interactions, syncytia formation

1. Introduction

Oncolytic viral therapy has become a promising anti-
cancer treatment approach due to the ability of these
viruses to preferentially replicate inside cancer cells and
eliminate them [1]. While there are some clinical suc-
cesses [2], there are still significant challenges that impede
a wider and more common use of this type of therapy:
from challenges associated with the systemic delivery of
the viruses (and their elimination by various immune re-
sponses), to the physical barriers caused by the extracel-
lular matrix (ECM) [3]. Regarding the systemic delivery
of oncolytic viruses, the intravenous administration would
be the preferable option, since viruses could thus reach
both the primary tumours and the metastases. However,
due to the immune system and other physiological filters
which eliminate these viruses, the current approaches fo-
cus mostly on intra-tumoural injection of the oncolytic
viruses [4]. Regarding the challenge caused by the physi-
cal barriers, namely the high interstitial fluid pressure and
the physical presence of ECM, this can be tackled with
the help of matrix-degrading enzymes that degrade vari-
ous types of fibrillar matrix deposits and make space be-
tween cells, which might eventually increase the possibility
of oncolytic viral infection [3].

While there are many types of oncolytic viruses used in
experiments and in clinical trials [5, 6, 7], some lead to bet-
ter anti-tumour results than others. For example, there is
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Figure 1: Graphical description of a viral-induced syncytium.

increasing evidence suggesting that a sub-class of oncolytic
viruses which encode for fusion proteins (and thus lead
to the formation of syncytia structures; see also Fig. 1)
might lead to better anti-tumour effects compared to the
non-fusogenic viruses [7, 8]. During infection with fuso-
genic viruses, viral fusion proteins that are used by these
viruses to enter the cells, are transported to the surface of
the infected cell where they mediate the fusion of this cell
to the neighbouring uninfected cells [7, 8]. The syncytia
structures are motile, as they extend large pseudopods to
move (and their average instantaneous velocity could be
slightly larger than the velocity of single cells [9]). This
movement, together with the movement of single cells, was
shown to play a role in the recruitment of more cells in the
syncytia [9]. While these syncytia seem to contribute to
the faster spread of the oncolytic virus through the unin-
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fected tumour via their higher viral yield and faster repli-
cation kinetics [8, 7, 10], the structures are usually viable
for a short time (usually 2 days [11]) before they undergo
immunogenic cell death. We should also mention here
that there are still many unknown aspects surrounding
the role of syncytium formation on the spread of an infec-
tion, such as whether this syncytium could also “sink” an
infection [12].

Therefore, to further enhance the therapeutic potential
of the fusogenic viruses, one needs to understand better
the interactions between these motile structures and the
multiscale aspects of cancer invasion (e.g., the movement
of cancer cells versus the movement of syncytia, the degra-
dation of ECM by cancer cells and its impact on the for-
mation and spread of syncytia). Mathematical models can
test and propose new hypotheses regarding these multi-
scale interactions.

The majority of the mathematical models that focus on
fusogenic oncolytic viruses consider only the implicit (tem-
poral) dynamics of syncytia cancer cells [13, 14, 15]. There
are also a few mathematical models that consider the ex-
plicit dynamics of the syncytia; see for example [16] for a
temporal (ODE) model, and [17, 18] for spatio-temporal
models. Moreover, the large majority of these models focus
on a single-scale dynamics of viruses spread among cancer
cells. Nevertheless, there are also a very few multiscale
models for oncolytic virus infections [19, 20].

In this study we revisit the novel multi-scale mathemati-
cal modelling framework introduced in [20] for cancer cells
interactions with oncolytic viruses, and extend it to in-
corporate also the dynamics of the syncytia generated by
fusogenic viruses. At the macroscopic scale, we investigate
the dynamical interactions between three types of can-
cer cells (uninfected, viral-infected and syncytia-forming
cells) and oncolytic viruses, in parallel with their move-
ment through the extracellular matrix (ECM). At the mi-
croscopic scale, we focus on the proteolytic dynamics of
the urokinase plasminogen activator system (uPA) that
locates at the invasive edge of the tumour site and is re-
sponsible for the degradation of the ECM. The macro-scale
(tissue-scale) dynamics connects with the micro-scale (cell-
scale) dynamics through a double feedback link that will
be explained in more detail in the next section.

Using this new multiscale moving-boundary mathemat-
ical model, we investigate numerically a few hypothe-
ses regarding syncytia movement: via pure diffusion
(faster/slower than the diffusion of single infected cancer
cells), or via diffusion combined with haptotactic move-
ment towards ECM components. We also investigate the
effect of density-dependent diffusion coefficient for the syn-
cytium structure (since it is unknown whether there is any
relationship between the speed of syncytium and the den-
sity of virus particles that created it, and/or the density
of ECM that acts as a barrier for virus/cells movement).
Finally, we investigate the impact of different probabili-
ties of syncytium formation on the outcome of oncolytic
therapy.

2. Modelling Hypotheses and Setting

In this study, we focus on the naturally multiscale nature
of the cancer-virus interaction, and explore key parts of
this process (which includes for the first time also the for-
mation of virus-induced syncytia structures) through the
two-scale modelling platform introduced in [21]. Specifi-
cally, while the direct interaction between the cancer cell
population and the virus (which can lead to the formation
of syncytia depicted in Figure 1) is observed at macroscale,
this has implications within cell-scale matrix-degarding en-
zymes proteolytic dynamics that takes place along the
invasive edge of the tumour. As this micro-dynamics is
linked to the macroscale through a non-local double feed-
back link (see Figure 2), this crucially determines the
changes in spatial tumour morphology during its evolu-
tion.

Figure 2: Schematics of the multiscale moving boundary approach.

2.1. Macroscopic Model for Virus-Tumour Interactions
via Syncytium Formation

Starting with the multi-scale moving boundary mathe-
matical framework concepts introduced in [21, 22] and the
syncytium assumptions introduced in [16], we describe a
new multi-scale spatio-temporal mathematical model for
the interactions between cancer cells and a fusogenic on-
colytic virus (which leads to the formation of syncytia
structures). Maintaining here the terminology of the mul-
tiscale framework introduced in [21], we denote the tissue-
scale (macro-scale) growing solid tumour by Ω(t) and we
assume that this evolves within a maximal cube of tissue
Y 2 RN ; N = 2; 3, and so Ω(t) � Y , 8t > 0. As illus-
trated in Figure 2, at the macroscopic-scale, we focus on
the dynamic interactions between spatially distributed un-
infected cancer cells c(x; �), infected cancer cells i(x; �) and
syncytia cancer cells s(x; �) with the oncolytic virus (OV)
particles v(x; �), while taking into account the surround-
ing extracellular matrix (ECM) density u(x; �); 8x 2 Ω(�).

2



(The dynamics occurring at the microscopic scale and its
top-down and bottom-up links to the macroscale will be
detailed in Section 2.2).

Before we describe the model equations, let us denote
by T the total cancer cells density, which is composed of
uninfected (c), viral-infected (i) and syncytia (s) cells, i.e.
T = c + i + s. The total density of viral-infected cells is
denoted by itot = i+ s.

Following biological evidence from several experimen-
tal studies [23, 24, 25, 26], we assume that the uninfected
cancer cells exhibit both random and directed movements.
The random movement is represented here via a diffusion
process (see [27]). The cell directed movement that we ad-
dress here is the one towards ECM gradients, and so adopt-
ing a similar approach as in [28], this is explored here via
a haptotactic process. At the same time, based on further
biological evidence [29, 30, 31], we assume here that the
cell proliferation process is govern by logistic growth. Fi-
nally, the cell population can decay due to infection caused
by oncolytic viruses at a rate � and to fusion with neigh-
bouring infected cancer cells i at a rate �. Hence, all these
considerations lead to the following governing equation for
the cell uninfected population, namely:

@c
@t

= Dc∆c� �cr � (cru) + �1c(1� c)� �cv � �ci: (1)

where Dc > 0 is a constant diffusion coefficient, �c > rep-
resents a constant haptotactic rate, �1 is the logistic pro-
liferation rate.

For the viral-infected cancer cells, drawing upon the
same biological consideration as for the uninfected can-
cer cells [23, 24, 25, 26], we assume that also this popula-
tion move randomly with diffusion coefficient Di and can
move in a haptotactic manner towards higher ECM gradi-
ents with rate �i. The proliferation of viral-infected cancer
cells is the result of infection with the oncolytic virus at
a rate �, as well as the failure to form a syncytium struc-
ture that leads to individual infected cells. We denote by
p0 the probability that a syncytium structure will fail to
form following the interactions between uninfected and in-
fected cancer cells (p0�ci). Thus, (1� p0) will denote the
probability that a syncytium will form (and (1�p0)�ci will
describe the formation of syncytia structures). Finally, the
infected cancer cells die at rate �i. These assumptions are
described by the following equation:

@i
@t

= Di∆i� �ir � (iru) + �cv + p0�ci� �ii (2)

For syncytia dynamics, we consider three distinct assump-
tions, namely:

(a) no diffusion (so their dynamics is the result of the
formation of syncytia structure as described above,
combined with death at a rate �s):

@s
@t

= (1� p0)�ci� �ss: (3)

(b) diffusion (with coefficient Ds) without haptotactic
movement towards the nearby ECM components:

@s
@t

= Ds∆s+ (1� p0)�ci� �ss: (4)

(c) diffusion (with coefficient Ds) and haptotactic move-
ment (at rate �s) towards higher ECM gradients:

@s
@t

= Ds∆s� �sr � (sru) + (1� p0)�ci� �ss: (5)

For the extracellular matrix (ECM) we assume that it
does not migrate nor diffuse, but can be remodelled. To
describe this remodelling process, we assume that ECM
components grow logistically at rate �2 (while compet-
ing for space with the cancer cells: uninfected, infected
and syncytia). In addition, ECM is degraded by all three
type of cancer cells: by uninfected cells at rate �c, by
viral-infected cells at rate �i, and by syncytia at rate �s.
Therefore the evolution of the density of ECM components
is described by the following equation:

@u
@t

= �u(�cc+ �ii+ �ss) + �2u(1� u� c� i� s) (6)

Finally, we assume that the oncolytic virus particles prolif-
erate when they are released by the infected and syncytia
cancer cells at rates bi and bs, respectively. These virus
particles have the ability to diffuse at rate Dv, and to move
haptotacticaly towards higher ECM gradients at rate �v.
Moreover, the free virus particles are eliminated (i.e., die)
at a rate �v. Their numbers are also reduced when they
infect at a rate � (and thus become trapped inside) the
uninfected cancer cells. The previous assumptions are de-
scribed mathematically by the following equation:

@v
@t

= Dv∆v � �vr � (vru) + bii+ bss� �cv � �vv: (7)

The above equations describe the non-dimensional
macroscopic scale dynamics in three different cases of grad-
ual increasing complexity, which we summarise below as
follows:

First case: syncytia cancer structures do not diffuse
on the spatial domain, but they still have interactions
with the ECM components whenever they meet on
the micro spatial domain (i.e. they still play a central
role on ECM remodelling and degradation). The full
macroscopic model is given by:

8
>>>>>>>><

>>>>>>>>:

@c
@t = Dc∆c� �cr � (cru) + �1c(1� c)� �cv � �ci;
@i
@t = Di∆i� �ir � (iru) + �cv + p0�ci� �ii;
@s
@t = (1� p0)�ci� �ss;
@u
@t = �u(�cc+ �ii+ �ss) + �2u(1� u� c� i� s);
@v
@t = Dv∆v � �vr � (vru) + bii+ bss� �cv � �vv:

(8)

3



Second case: syncytia cancer structures have diffusion
abilities, but they do not interact haptotactically with
the nearby ECM’s components. The full macroscopic
model is therefore given by:
8
>>>>>>>><

>>>>>>>>:

@c
@t = Dc∆c� �cr � (cru) + �1c(1� c)� �cv � �ci;
@i
@t = Di∆i� �ir � (iru) + �cv + p0�ci� �ii;
@s
@t = Ds∆s+ (1� p0)�ci� �ss;
@u
@t = �u(�cc+ �ii+ �ss) + �2u(1� u� c� i� s);
@v
@t = Dv∆v � �vr � (vru) + bii+ bss� �cv � �vv:

(9)

Third case: syncytia cancer structures diffuse ran-
domly in the spatial domain and also move hapto-
tactically towards higher ECM gradients. Thus the
full macroscopic model is given by:
8
>>>>>>>><

>>>>>>>>:

@c
@t = Dc∆c� �cr � (cru) + �1c(1� c)� �cv � �ci;
@i
@t = Di∆i� �ir � (iru) + �cv + p0�ci� �ii;
@s
@t = Ds∆s� �sr � (sru) + (1� p0)�ci� �ss;
@u
@t = �u(�cc+ �ii+ �ss) + �2u(1� u� c� i� s);
@v
@t = Dv∆v � �vr � (vru) + bii+ bss� �cv � �vv:

(10)

Furthermore, each of these coupled dynamics are accom-
panied by initial conditions

c(x; 0)=c0(x); i(x; 0)= i0(x); s(x; 0)=s0(x); x2Ω(0);

u(x; 0)=c0(x); v(x; 0)= i0(x); x2Y;

which will be specified explicitly with particular forms for
numerical simulations in Section 3.
Finally, since we do not assume any transport across the
boundary of the activity domains, each of these coupled
dynamics are accompanied by Neumann zero boundary
conditions, namely:

@c
@n

����
@
(t)

= 0; @i
@n

����
@
(t)

= 0; @s
@n

����
@
(t)

= 0;

@u
@n

����
@Y

= 0; @v
@n

����
@Y

= 0;

were n represents simply the normal direction across the
interface of the corresponding activity domain.

2.2. The Microscopic Proteolytic Dynamics and its Double
Feedback to Link to Macro-Scale

As established biologically [32, 33, 34], the cell-scale
molecular dynamics of the matrix degrading enzymes at
the tumour invasive edge plays a critical role within the
cancer cells invasion process. Several important families
of matrix degrading enzymes are collectively secreted by
the cancer cells within the outer proliferating rim of the
tumour exercise a spatial transport in a cell-scale neigh-
bourhood of the the tumour interface and this way cause

a degradation of the peritumoural ECM, leading to con-
tinuous morphological changes in the macro-scale tumour
boundary and ultimately resulting in further progression
of the cancer in the surrounding tissue. Among these
proteolytic enzymes, alongside the notable contribution of
the family of matrix metalloproteinases (MMPs), a piv-
otal role within cancer invasion is played by the urokinase
plasminogen activator (uPA) system, which not only that
decomposes the ECM but also has implications in acti-
vating some of the MMPs as well as interfering with the
activity of cytokines and growth factors (see [35]).

In brief, the uPA enzymatic system includes the coupled
dynamics of three main molecular species (see [36, 37]),
namely: (1) the inactive urokinase plasminogen activator
(uPA); (2) uPA inhibitor (PAI-1); and (3) plasmin. In or-
der to become active, the inactive uPA needs first to bind
to the uPA receptors (uPAR). Once activated, the active
uPA can activate the plasmin molecules (which are freely
available in ECM) turning these into plasmin. However, at
the same time, the active uPA molecules can also become
inactive if these are bound by inhibitor molecules PAI-1,
leaving this way the dynamics of the uPA system. Mathe-
matically, we denote here the spatio-temporal distribution
for each of these molecular species in the uPA system as
follows:

� a(y; �) represents the urokinase plasminogen activator
(uPA), without distinguishing here between its active
and inactive forms;

� p(y; �) stands for the inhibitor PAI-1; and

� m(y; �) is the plasmin;

where (y; �) 2 Bk�k1(@Ω(t0); �), with Bk�k1(@Ω(t0); �) rep-
resenting a cell-scale neighbourhood of radius � > 0 for the
tumour interface @Ω(t0).

To address the multiscale dynamics of the cancer inva-
sion process while accounting for the important role of the
cell-scale (micro-scale) dynamics of the uPA system at the
invasive edge of the tumour, the authors in [22] have ap-
plied the two-scale moving boundary framework initially
introduced in [21] to explore the impact the uPA has upon
the changes in the tissue-scale (macro-scale) tumour mor-
phology of the growing cancer. Therefore, since here we
build upon these two previous works and expand these
by accounting also for the presence of an oncolytic virus
with syncytia formation at macro-scale, to describe the
micro-dynamics and its non-local feedback links with the
tumour macro-dynamics that, let us briefly revisit in the
following the key notations of the framework introduced
and discussed in [21, 22]. Thus, to capture the micro-scale
dynamics occurring at the invasive edge of the tumour, fol-
lowing a series of topological considerations, as described
in [21], a covering family P consisting of overlapping cubes
P(t) := f�Y g�Y ∈P(t) is constructed from a section of half-
way shifted small cubes of an appropriately chosen dyadic
decomposition of the maximal tissue macro-cube Y (where
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the tumour Ω(t) invades) that cover the tumour interface
@Ω(t), which, in brief, exhibits and is completely deter-
mined by the following properties:

� each �Y , also referred to as a micro-domain, provides
a cell-scale neighbourhood of �Y \ @Ω(t) of micro-
scale size � > 0 with the particular properties that the
regions captured inside and outside of the boundary,
namely �Y \ Ω(t) and �Y n Ω(t), have topologically
connected interiors;

� the family P(t) := f�Y g�Y ∈P(t) covers completely the
boundary @Ω(t).

Thus, at any given time t0 > 0, the covering bundle
P(t0) enables the exploration of the uPA system dynam-
ics on the cell-scale neighbourhood Bk�k1(@Ω(t0); �) by de-
composing this in a bundle of uPA micro-processes on each
of the micro-domains �Y . In this context, during any
macroscopic time range [t0; t0 + ∆t] that is correspond-
ingly matched by an equal length micro-scale time span
[0;∆t] for the microdynamics, on any micro-domain �Y ,
a source of uPA arises naturally at any micro-scale point
y 2 �Y as a collective contribution not only of the un-
infected cancer cells but also of the infected cancer cells
and syncytia population that arrive within a given dis-
tance � > 0 with respect to y, see Figure 2. Thus, the
microscale source of uPA is induced non-locally by the
macro-dynamics through a top-down link, and this can be
mathematically expressed as

f
�Y

uPA
(y; �) =

R

B(y;�)∩
(t0
(�cc+ �ii+ �ss)(�; t0 + �)d�

�(B(y; �) \ Ω(t0)
(11)

where � 2 [0;∆t] and �c, �i and �s are the rates at which
the uninfected cancer cells, the infected cancer cells and
syncytia population secrete uPA, respectively. Since in the
presence of this source, per unit time, the uPA molecules
are assumed to exercise a random movement and are taken
out of the system through binding to the inhibitor PAI-1
as well as to the receptors uPAR, the dynamics of the uPA
can therefore be expressed mathematically as:

@a
@�

= Da∆a| {z }
di�usion

�  11ap| {z }
uPA/PAI-1

+ (  12|{z}
production

�  13u| {z }
uPA/uPAR

)f
�Y

uPA
(y; �)

(12)
At the same time, the inhibitor PAI-1, which is pro-
duced through the activation of plasmin, is eliminated
from the system dynamics after binding to uPA and, no-
tably, through non-local binding to the surrounding ECM
(more specifically, to its constituent vitronectin). This
binding of PAI-1 to constituents of the surrounding tissue-
scale ECM density acts therefore as an absorption term for
the PAI-1 micro-dynamics, whose absorption coefficient is
again mediated and induced by the macro-dynamics (en-
hancing this way the top-down feedback link) and can be

formalised mathematically through the non-local expres-
sion

f
�Y

PAI�1
(y; �) =

R

B(y;�)
u(�; t0+�)d�

�(B(y; �))
: (13)

where (y; �) 2 (�Y \Ω(t0))� [0;∆t]. Therefore, the micro-
dynamics of PAI-1 is governed by

@p
@�

= Dp∆p| {z }
di�usion

�  21ap| {z }
uPA/PAI-1

� 22p f
�Y

PAI�1
(y; �)

| {z }
PAI-1/ECM

+  23m| {z }
production

:

(14)
Finally, as the loss of PAI-1 due to binding to ECM has a
positive feedback on plasmin, the usual source of plasmin
that is mediated by the activation of uPA through binding
to uPAR receptors is enhanced this way by an additional
production source that corresponds to the non-local ab-
sorption term from the PAI-1 dynamics in (14). Thus, in
the presence of this enhanced source, per unit time, plas-
min exercises a random movement and naturally decays,
and so its dynamics can be formalised mathematically as

@m
@�

= Dm∆m| {z }
di�usion

+ 31af
�Y

uPA
(y;�)

| {z }
uPA/uPAR

+ 32pf
�Y

PAI�1
(y;�)

| {z }
PAI-1/ECM

� 33m| {z }
decay

:

(15)

Therefore, the microscopic proteolytic dynamics is given
by the following 3D-reaction-diffusion-taxis system:

8
>>><

>>>:

@a
@�=Da∆a�  11ap+ ( 12 �  13u)f

�Y

uPA
(y; �);

@p
@�=Dp∆p�  21ap�  22p f

�Y

PAI�1
(y; �) +  23m;

@m
@� =Dm∆m+  31af

�Y

uPA
(y;�) +  32pf

�Y

PAI�1
(y;�)�  33m;

(16)
Finally, as we assume “no molecular memory” from any
previous macro-micro stages, the micro-dynamics system
(16) is accompanied by zero initial conditions, i.e.,

a(y; 0) = 0; p(y; 0) = 0; m(y; 0) = 0; 8y 2 �Y:

Furthermore, as we there is no molecular transport across
the interface of the micro-domains �Y , we assume also zero
Neumann boundary conditions, i.e.,

@a
@n

����
�Y

= 0;
@p
@n

����
�Y

= 0;
@m
@n

����
�Y

= 0:

As discussed in detail [21, 22], the cross-interface trans-
port exercised by the uPA system within each micro-
domain �Y (captured in (16)) leads to a pattern of degra-
dation of the peritumoural ECM within �Y nΩ(t0) resulting
into an important bottom-up feedback to the tissue-scale
that ultimately dictates the way the macro-scale tumour
boundary is relocated, as illustrated in Figure 2. Thus,
to capture this feedback link, we follow the multiscale ap-
proach introduced in [21] and further discussed in [22],
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which enables us to explore the regions of significant ECM
degradation within �Y n Ωt0 and ultimately to determine
a unique direction of movement ��Y and a displacement
magnitude ��Y that indicates the way the boundary cap-
tured by �Y , namely �Y \ @Ω(t0) is progressed further in
the domain (please see [21, 22] for full details). This en-
ables us to capture the choreographic movement of the
portion of the boundary �Y \ @Ω(t0) and to represented
this at macro-scale through the movement of the central
boundary point of �Y \ @Ω(t0) to a new position in the
direction �Y \ @Ω(t0) by a displacement magnitude ��Y .
Finally, under the incidence of this bottom-up feedback
induced by the tumour invasive edge micro-dynamics over
each time interval [t0; t0 + ∆t], the boundary of the tu-
mour Ω(t0) is eventually progressed into a newly relocated
and eventually expanded shape Ω(t0 + ∆t) where the full
multiscale dynamics is continued on the subsequent macro-
micro stage [t0 +∆t; t0 +2∆t], as schematically illustrated
in Figure 2.

(a) (b)

(c) (d)

Figure 3: Initial Conditions: (a) uninfected cancer cells den-
sity; (b) ECM density; (c) OV density (one initial dose) and
(d) OV density (�ve initial doses). The white line indicates
the boundary of the total tumour cells (uninfected & infected
densities).

3. Multiscale Numerical Simulations for Macro-
Dynamics Cases (8)-(10)

Starting from the two-scale computational framework
that was previously developed in [20] for the case that
was not considering syncytia structures formation (which
was based on the initial two-scale framework proposed in
[21]), we developed that framework further to cope with
the new context of multiscale dynamics of cancer-virus in-
teractions in the presence of syncytia structures formation.
Similar to the initial framework (introduced in [21]), the
extended multiscale numerical scheme that we developed
and use here combines predictor-corrector finite differences
for the macro-dynamics with quadrilateral finite element

approach for micro-dynamics. Further, as detailed in [21],
the internal macro-mesh is extended with additional mesh
points when the boundary is relocated (which are activated
from a silent background mesh on the maximal tissue cube
Y ) Finally, since the development of this extended numer-
ical scheme required a discretisation strategy similar to
that used in the non-syncytia case (considered in [20]), we
did not include that here and instead, for details of the
main implementation steps, we refer the reader to [20, 21].

3.1. Initial Conditions for the Macro-Micro Model

The initial distribution of the uninfected cancer cells
(which form a tumour localised in the middle a computa-
tional domain Y = [0; 8]� [0; 8]) is given by:

c(x; 0) =

�
exp(�‖x−(4;4)‖2

2√
�x�y )� exp(�28:125)

�
�1(x)

2
;

where �1(x) := �B((4;4);0:5−
) �  
 , with  
 a Gaussian
mollifier that enables a smooth transition to zero outside
a radius of 0.5 of the ball B((4; 4); 0:5), as shown Figure
3-(a).

Since the oncolytic virus is introduced into the system
at the start of the simulations, it makes sense to assume
that at this time (i.e., t = 0) there are no virus-infected
and syncytia cancer cells:

i(x; 0) = 0; and s(x; 0) = 0:

Regarding the virus, we assume that this is injected at tu-
mour site (at the start of the simulations), via a single or
multiple insertion points [38, 39, 40]. For the baseline sim-
ulations, we choose a single insertion point, as described
in Figure (3)(c) and given by the expression

v(x; 0) =

�
exp(�‖x−(4:5;4:5)‖2

2√
�x�y )� exp(�28:125)

�
�2(x)

2
;

where �2(x) := �B((4:5;4:5);0:5−
) �  
 . However, for an
improved viral therapy outcome scenario (given that the
initial tumour lesion is quite spread over space – see Fig-
ure (3)(a)), we inject five virus doses at different positions
inside the tumour, as shown in Figure (3)(d):

v(x; 0) =
P

i;j∈{−1;1}
0:5
�
exp(�‖x−(4+0:5i;4+0:5j)‖2

2√
�x�y )�exp(�28:125)

�
�i;j(x)

+0:5
�
exp(�‖x−(4;4)‖2

2√
�x�y )� exp(�28:125)

�
�1(x);

where �i;j(x) := �B((4+0:5i;4+0:5j);0:5−
) �  
 , 8i; j 2
f�1; 1g.

Finally, since the ECM is naturally heterogeneous, we
considered here the following ECM initial condition :

u(x; 0) =
1 + 0:3sin(4� kxk2) + sin(4� k(4; 0)� xk2)

2
:

Further insights upon the impact that the choice of the
ECM initial conditions has on the overall tumour evolu-
tion are discussed in Appendix A, where we explore the
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(stage 1) (stage 50) (stage 100)

a.

b.

c.

d.

e.

f.

Figure 4: Multi-scale simulation results for macro-dynamics syncytia system (8) at three macro-micro stages (1,50 and 100) for
the baseline parameter values from Table 1, showing: a. virus density; b. uninfected cancer cells density; c. infected cancer cells
density; d. syncytia cancer cells density; e. total cancer cells density and f. ECM density.

sensitivity of the viral treatment of the tumour with re-
spect to the level of heterogeneities within the ECM.

Regarding the initial conditions at the microscale: we
assume that the enzymes are produced only by the cancer
cells at macroscale level (and passed nonlocally to the mi-
croscale), and there are no other pre-existing enzymes in
the peritumoural interface. Thus, we always consider zero
initial conditions for enzymes at the microscale.

3.2. Parameters

To simplify the presentation of the numerical results, in
the following two tables we summarise the baseline param-
eter values used in the simulations.

3.3. Results

To investigate the different scenarios discussed in the
previous section (regarding the tumour-OV interactions in
the presence of cells syncytium) we start our numerical
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(stage 1) (stage 50) (stage 100)

a.

b.

c.

Figure 5: Multi-scale simulation results for macro-dynamics syncytia system (9) in the case of D s = D i at three macro-micro stages
(1,50 and 100) for the baseline parameter values from Table 1, showing: a. infected cancer cells density; b. syncytia cancer cells
density and c. total cancer cells density.

(stage 1) (stage 50) (stage 100)

a.

b.

c.

Figure 6: Multi-scale simulation results for macro-dynamics syncytia system (9) in the case of D s = D i =4 at three macro-micro
stages (1,50 and 100) for the baseline parameter values from Table 1, showing: a. infected cancer cells density; b. syncytia cancer
cells density and c. total cancer cells density.

simulations with the baseline parameters summarised in
Tables 1, 2.

We start our numerical investigation of the multiscale
moving-boundary model proposed in this study by fo-
cusing on the three cases of syncytia movement/lack-of-

movement. For the first case, described mathematically
by the macro-dynamics (8), we assume that syncytia struc-
tures do not have any movement ability (i.e., neither dif-
fusive nor haptotactic movement), but they can still play
a role in the remodelling and degradation of ECM compo-
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Parameter Value References
Dc 0.00675 [41]
Di 0.0054 [41]
Ds 0.0027 Di

2
Dv 0.0036 [41]
�c 2:85� 10−2 [22]
�i 2:85� 10−2 [22]
�s 2:85� 10−3 Estimated
�v 2:85� 10−3 [20]
�1 0.25 [22]
� 79� 10−3 [41]
� 158� 10−3 � > �, [13], [42]
�i 0.05 [41]
�s 0.05 (�s = �i) Estimated
�v 0.025 [41]
�c 0.15 [22]
�i 0.075 [20]
�s 0.0375 (�c4 ) Estimated
�2 0.015 [20]
bi 2 [20]
bs 2 (bs = bi) Estimated
p0 0.5 50% Probability
�c 0.8 [20]
�i 0.4 [20]
�s 0.4 (�s = �i) Estimated

Table 1: Baseline parameters values for the macroscopic models.

nents on the tumour region Ω(t). The dynamics of the var-
ious macroscale model components is presented in Figure
4, where we show (for three different micro-macro stages,
1, 50 and 100): the virus density (row a.), the density
of uninfected cancer cells (row b.), the density of infected
cancer cells (row c.), the density of syncytia cancer cells
(row d.), total cancer cells density (row e.), and ECM den-
sity (row f.). We note that in this case, the syncytia struc-
tures form mainly in those tumour regions characterised
by lower tumour cell densities, while the single infected
cells are mainly in those regions characterised by higher
tumour cell densities.

For the second case, described mathematically by the
macro-dynamics (9), we assume that syncytia cells can
move randomly inside the macroscopic domain, but they
do not show haptotactic migration towards regions of
higher ECM levels. To investigate the effect of this ran-
dom motility of syncytia structures, we perform simu-
lations with different syncytia diffusion coefficients Ds
(with respect to Di - the diffusion coefficient of single in-
fected cells). Thus, in Figure 5 we investigate the situ-
ation Ds = Di; in Figure 6 we investigate the situation
Ds = Di=4; and in Figure 7 we investigate the situation
Ds = 4Di. We observe here that lower Ds compared to
Di (i.e., Ds = Di=4) leads to syncytia structures localised
also in the non-infected part of the tumour, which causes
an overall reduction in tumour size and tumour spread
(as the invasion boundary is shrinking). In contrast, in-

Parameter Value
Da 2:5� 10−3

Dp 3:5� 10−3

Dm 4:91� 10−3

 11 0:75
 12 0:215
 13 0:3
 21 0:75
 22 0:55
 23 0:5
 31 0:11
 32 0:75
 33 0:5

Table 2: Summary of parameter values for the microscopic
model component. All parameters for this system are taken
from the reference [22].

creasing Ds compared to Di (i.e., Ds = 4Di) leads to an
increase in tumour size and tumour spread. It is possible
that lower syncytia motility leads to more localised tumour
killing and localised release of virus particles, while larger
syncytia motility leads to a wider spread of the virus par-
ticles, which also increases their probability of elimination.
In Figure 8 we summarise all these results by showing the
effect of syncytia random motility on: (a) total tumour
mass (i.e., uninfected+infected+syncytia); (b) tumour in-
vasion area; and the evolution of the ration between the
total tumour mass and the tumour invasion area

Next, we return to the case bs = bi and �s = �i, and
show an example of significant tumour reduction when
we decrease the parameters associated with the prote-
olytic enzymes (see Table 3), which are expected to lead
to smaller enzymatic transport across the tumour inter-
face, ultimately resulting in peritumoural ECM degrada-
tion. This results in slower tumour invasion, which en-
ables the syncytia and infected cells to be more effective
at cancer cell elimination on tumour domain Ω(t). This
behaviour is depicted in Figure 15. In Figure 16 we com-
pare – in terms of total tumour mass and tumour invasion
area – this improved therapy scenario versus the baseline
scenario described by the parameter values listed in Ta-
ble 1.

Finally, we investigate the third case, described mathe-
matically by the macro-dynamics (10), where we assume
that syncytia cancer cells not only diffuse randomly but
also move haptotactically towards higher ECM gradients.
As before, we investigate numerically the effects of vari-
ous syncytia haptotactic velocities �s (as compared with
the haptotactic velocities of single infected cancer cells �i,
and the velocities of virus particles �v). Figure 9 sum-
marises these effects on: (a) total tumour size; (b) tu-
mour invasion area for the following two sub-cases: (i)
�s = �i = 2:85� 10−2 and (ii) �s = �v = 2:85� 10−3; and
the evolution of the ration between the total tumour mass
and the tumour invasion area. Note that case (ii), where
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(stage 1) (stage 50) (stage 100)

a.

b.

c.

Figure 7: Multi-scale simulation results for macro-dynamics syncytia system (9) in the case of D s = 4D i at three macro-micro
stages (1,50 and 100) for the baseline parameter values from Table 1, showing: a. infected cancer cells density; b. syncytia cancer
cells density and c. total cancer cells density.

Parameter Value References
Dc 0.00675 [41]
Di 0.0054 [41]
Ds 0.000675 Estimated
Dv 0.0036 [41]
�c 2:85� 10−2 [22]
�i 2:85� 10−2 [22]
�s 2:85� 10−3 Estimated
�v 2:85� 10−3 [20]
�1 0.25 [22]
� 395� 10−3 [20]
� 2� � > �, [13], [42]
�i 0.0125 [20]
�s 0.0125 (�s = �i) Estimated
�c 0.3 [20]
�i 0.15 [20]
�s 0.075 (�c4 ) Estimated
�2 0.015 [20]
bi 3 [20]
bs 3 (bs = bi) Estimated
p0 0.75 Estimated
�v 0.025 [41]
�c 0.8 [20]
�i 0.4 [20]
�s 0.4 (�s = �i) Estimated

Table 3: Parameter values list for the improved tumour suppres-
sion results, as summarised in Figure (16).

�s = �v < �i, leads to a slightly better tumour outcome in
terms of both tumour mass and invasion area.

Having investigated the role of syncytia’s diffu-
sive/haptoctatic speeds on tumour growth and spread, we
next focus on the impact of the fusion failure probability
p0 on the overall oncolytic therapy. (Note that higher p0
means higher numbers of individual OV-infected cancer
cells i, and lower numbers of syncytia structures s). In
Figures 10, 11 and 12 we investigate the effect of three
failure levels of syncytia fusion probability: p0 = 50%,
p0 = 25% and p0 = 75%, respectively. By comparing the
results in these three figures we can conclude that higher
p0 values are associated with lower syncytia densities and
lower tumour sizes. The anti-tumour effect of higher p0
probabilities can be seen more clearly in Figure 13, where
we show the evolution of total tumour mass and tumour
invasion area as well as the evolution of the ratio of total
tumour masses to tumour invasion area over macro-micro
stages 1 – 100.

This unexpected outcome might be caused by the as-
sumption that bs = bi (i.e., both individually-infected tu-
mour cells and syncytia structure burst at the same rates
to release new virus particles), and �s = �i (i.e., both
individually-infected tumour cells and syncytia structures
die at the same rates). However, it makes sense to assume
that syncytia live longer than the individually-infected
cells [43], and that each syncytium has a higher viral yield
compared to the yield of a single infected cell. Thus, in
Figure 14 we investigate the anti-tumour/pro-tumour ef-
fects of higher syncytia burst rates (bs = 1:5bi) and lower
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(a) (b)

(c)

Figure 8: Comparison of: (a) total tumour masses evolution versus macro-micro stages 1 { 100 for the macro-dynamics case (9)
for various random di�usion scenarios of syncytia cancer cells; (b) tumour invasion area versus macro-micro stages 1 { 100 for
the macro-dynamics case (9) for various random di�usion scenarios of syncytia cancer cells; and (c) the evolution of the ratio
of total tumour masses to tumour invasion area over macro-micro stages 1 { 100 for the macro-dynamics case (9) for various
random di�usion scenarios of syncytia cancer cells. (i) D s = 4D i ; (ii) D s = D i ; (iii) D s = D i =4.

syncytia death rates (�s = �i
5 ), and compare the results

with the ones for the above case (i.e., bs = bi, �s = �i). It
is clear that higher probabilities of syncytium formation
(i.e., lower p0) lead to faster tumour death when bs > bi
and �s < �i.

4. Extension of Macro-Dynamics Case (10) to In-
clude Density-Dependent Syncytia Diffusion

The previously-discussed cases assumed that syncytia
diffusion is constant. However, given the size of this gi-
ant multi-nucleated structure, it is likely that its motility
is influenced by the density of ECM, as well as the den-
sity of fusogenic oncolytic viruses (as more viruses could
lead to larger syncytia, which extend larger pseudopods
to move [9]). In the following we generalise the macro-
dynamics described in model (10) by assuming that syn-

cytia diffusion coefficient is density dependent:

8
>>>>>>>><

>>>>>>>>:

@c
@t = Dc∆c� �cr � (cru) + �1c(1� c)� �cv � �ci;
@i
@t = Di∆i� �ir � (iru) + �cv + p0�ci� �ii;

@s
@t =

�
Ds

v
fs(u;v)

�
∆s� �sr � (sru) + (1� p0)�ci� �ss;

@u
@t = �u(�cc+ �ii+ �ss) + �2u(1� u� c� i� s);
@v
@t = Dv∆v � �vr � (vru) + bii+ bss� �cv � �vv:

(17)
Note that this model reduces to case (10) if we choose
fs(u; v) = v. In the following we consider two examples
for fs (both leading to a saturated diffusion coefficient for
the syncytia structures):

i. fs(u; v) depends only on OV, and the dependence is
linear:

fs(u; v) = v + 1; (18)

ii. fs(u; v) depends on both OV and ECM, and the de-
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(a) (b)

(c)

Figure 9: (a) Comparison of total tumour masses evolution over macro-micro stages 1 { 100 for the macro-dynamics case (10)
for various haptotactic rates of syncytia cancer cells ECM gradients. (b) Comparison of tumour invasion area over macro-micro
stages 1 { 100 for the macro-dynamics case (10) for various haptotactic rates of syncytia cancer cells towards ECM gradients. (c)
Comparison of the evolution of the ratio of total tumour masses to tumour invasion area over macro-micro stages 1 { 100 for the
macro-dynamics case (10) for various haptotactic rates of syncytia cancer cells ECM gradients. (i) � s = � i ; (ii) � s = � v .

pendence is linear:

fs(u; v) = u+ v + 1: (19)

In Figure 18 we show the evolution of the total tumour
mass (for the baseline parameters listed in Table (1)) over
100 micro-macro stages. We compare the baseline dynam-
ics generated by model (10) (case (a) described by the red
curve) with the dynamics generated by model (17)+(18)
(case (b) described by the blue curve), and by model
(17)+(19) (case (c) described by the green curve). Overall,
the model with the density-dependent syncytia diffusion
shows less tumour growth and smaller tumour invasion
area during the later stages of tumour dynamics compared
with the baseline model (with constant diffusion). This tu-
mour reduction can be explained by the fact that syncytia
diffusion (which depends on OV and ECM spatial distri-
bution) leads to the accumulation of syncytia structures
in areas with uninfected and infected tumour cells (the in-
fected tumour cells releasing more OV), which ultimately
causes more tumour destruction. We also note that there is

no significant difference between the model dynamics with
fs described by either equations (18) or (19). For a visual
description of the effect of density-dependent syncytia dif-
fusion on the spatial distribution of total tumour (unin-
fected+infected+syncytia cells) at different micro-macro
simulation stages please see Figure 17.

5. Summary and Discussions

In this study, we extended a multi-scale moving bound-
ary model for oncolytic cancer virotherapy introduced
in [20], by considering a fusogenic virus that can form
syncytia structures (which have been shown experimen-
tally to improve tumour reduction and control [7, 8]). The
presence of syncytia not only changes the macro-dynamics
with respect to the cases studied in [20], but given the link
across the scales (from macro to micro) detailed in Section
2.2 that involves this time also the syncytia cells, this also
influences the micro-dynamics of the proteolytic activity
that takes place along the tumour invasive edge. In turn,
this altered proteolitic micro-dynamics has direct impact
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(stage 1) (stage 50) (stage 100)

a.

b.

c.

Figure 10: Multi-scale simulation results for macro-dynamics syncytia system (10) in the case of 50% fusion failure probability
(p0 = 0:5) at three macro-micro stages (1,50 and 100) for the baseline parameter values from Table 1, showing: a. infected cancer
cells density; b. syncytia cancer cells density and c. total cancer cells density.

upon the progression of the tumour as well as upon the
changes of its morphology, leading to a different tumour
behaviour than the one observed in [20]. Further, we used
this new multiscale model to investigate various hypothe-
ses regarding the movement of these syncytia and their
interactions with the tumour microenvironment across dif-
ferent scales. The macroscale interactions focused on the
dynamics of (infected and uninfected) cancer cells, syncy-
tia structures, virus particles and the surrounding extra-
cellular matrix (ECM), while the microscale interactions
focused on the degradation of ECM by enzymes produced
by the tumour cells (see Figure 2).

Using a computational approach, we investigated dif-
ferent assumptions regarding the macroscale dynamics of
syncytia structures: from the anti-tumour/pro-tumour ef-
fects of various diffusive and advective abilities of syncytia
(see Figures 4-9), to the anti-tumour/pro-tumour effects of
different probabilities of syncytia forming (see Figures 10-
13). The results suggested that lower syncytia motility
compared to single infected cells (i.e., Ds < Di, and
�s < �i) could lead to better anti-tumour outcomes. More-
over, higher probabilities (p0) of fusogenic viruses failing to
form syncytia seemed to lead to better anti-tumour out-
comes. These results were likely caused by the specific
baseline parameter values listed in Table 1, which were
chosen to match the parameter values from [20].

To explain these unexpected results, we also investigated
the combined effect of syncytia-forming probability and
different death rates for the infected cells and syncytia (�i,
�s), as well as different virus burst rates for the infected

cells and syncytia (bi, bs); see Figure 14. The results sug-
gested that more realistic parameter values (i.e., bs > bi,
�s < �i, and p0 = 0:25 ) (1 � p0) = 0:75) lead to better
anti-tumour outcomes compared to the baseline case. We
also investigated the effect of decreasing the values of some
parameters associated with the proteolytic enzymes (i.e.,
lower enzymatic transport across tumour interface), and
observed that this lead to a slower tumour invasion and
faster tumour elimination by the infected cells and syncy-
tia; see Figures 15 - 16. We can conclude from here that
the outcome of the oncolytic therapy does not depend only
on various macroscopic cell and virus particle dynamics,
but also on the microscopic dynamics of enzymes involved
in ECM degradation.

Panels (a) of Figures 8, 9, 13, 14 and 16 suggest that be-
tween the macro-micro stages 40 and 50 the tumour mass
becomes very small. This would suggest that there is the
possibility of tumour extinction by oscillations (see, al-
though in another context, [44, 45]). However, our model
is deterministic, and as such it cannot capture: i) stochas-
tic behaviours when the tumor mass is very small; ii) ex-
trinsic stochastic fluctuations, which is a delicate matter
in tumour modelling, see [46, 47].

Finally, given that the syncytia structures are very large,
their movement might be impacted by the density of ECM
and/or the density of fusogenic virus particles. Thus, we
investigated numerically the possibility that the random
motility of these syncytia is not constant but depends on
these densities (see equations (17)-(19)). The results in
Figures 17 - 18 suggested that the assumption of density-
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(stage 1) (stage 50) (stage 100)

a.

b.

c.

Figure 11: Multi-scale simulation results for macro-dynamics syncytia system (10) in the case of 25% fusion failure probability
(p0 = 0:25) at three macro-micro stages (1,50 and 100) for the baseline parameter values from Table 1, showing: a. infected cancer
cells density; b. syncytia cancer cells density and c. total cancer cells density.

(stage 1) (stage 50) (stage 100)

a.

b.

c.

Figure 12: Multi-scale simulation results for macro-dynamics syncytia system (10) in the case of 75% fusion failure probability
(p0 = 0:75) at three macro-micro stages (1,50 and 100) for the baseline parameter values from Table 1, showing: a. infected cancer
cells density; b. syncytia cancer cells density and c. total cancer cells density.
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(c)

Figure 13: (a) Comparison of total tumour masses evolution over macro-micro stages 1 { 100 for the macro-dynamics case (10) for
various fusion failure probabilities p0. (b) Comparison of tumour invasion area over macro-micro stages 1 { 100 for the macro-
dynamics case (10) for various fusion failure probabilities p0. (c) Comparison of the evolution of the ratio of total tumour masses
to tumour invasion area over macro-micro stages 1 { 100 for the macro-dynamics case (10) for various fusion failure probabilities
p0. (i) p0 = 0:25; (ii) p0 = 0:50; (iii) p0 = 0:75.

dependent syncytia diffusion (versus constant diffusion)
can impact the outcome of the oncolytic therapy. For the
baseline parameter values shown in Table 1 the density-
dependent diffusion lead to lower long-term tumour sizes
and smaller tumour invasion areas, since the ECM den-
sity stopped the fast spread of syncytia, thus allowing the
viruses to be more successful at killing the tumour cells.

A global multiscale analysis for this multiscale moving-
boundary framework in its entirety remains an open prob-
lem. However, questions regarding the local existence and
uniqueness of the macro- and micro-dynamics, while ex-
ploring the top-down link in between, are currently in
preparation and form the subject of a separate work. Fi-
nally, on the numerical side, while discussions and early
tests concerning of the robustness have been successfully
carried out in [21] where this multiscale moving boundary
framework has been initially introduced, further investi-
gations are still needed to establish an overall multiscale
numerical consistency concept for this multiscale compu-

tational platform in its entirety.

We conclude this discussion by emphasising that while
cell-fusion events are very important in cell biology (in
both health and disease), their roles on the spread of vi-
ral infections are not always fully understood [12]. In this
study we formulated and tested computationally some hy-
potheses regarding the importance of various syncytium-
related parameters on the spread of oncolytic viral infec-
tion and tumour reduction/elimination. One major lim-
itation is the lack of experimental data to validate the
modelling. It is however our hope that the hypotheses for-
mulated in this paper will stimulate suitable biological ex-
perimental work that would challenge and sick to validate
our computational findings. Thus, the next step would be
to combine this multiscale moving-boundary mathemat-
ical framework with in vitro or in vivo experiments for
oncolytic viral therapies for cancer (see, for example, the
spatial data from [48] on oncolytic virus spread), to try
to approximate some parameter ranges and thus to make
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Figure 14: (a) Comparison of total tumour masses evolution over macro-micro stages 1 { 100 for the macro-dynamics case (10) for
various fusion probabilities p0. (b) Comparison of tumour invasion area over macro-micro stages 1 { 100 for the macro-dynamics
case (10) for various fusion failure probabilities p0 with respect to di�erent values of bs and � s . (c) Comparison of the evolution of
the ratio of total tumour masses to tumour invasion area over macro-micro stages 1 { 100 for the macro-dynamics case (10) for
various fusion probabilities p0. (i) p0 = 0:25, when bs = bi and � s = � i ; (ii) p0 = 0:75 when bs = bi and � s = � i . (iii) p0 = 0:25
when bs = 1:5bi and � s = � i

5 ; (iv) p0 = 0:75 when bs = 1:5bi and � s = � i
5 .

better predictions on possible treatment outcomes.

Acknowledgements

The first author would like to acknowledge the support
received from the Saudi Arabian Cultural Bureau in the
UK on behalf of Umm Al Qura University.

Appendix A. Sensitivity analysis for ECM Initial
Conditions

In Figure A.19, we explore the sensitivity of heterogene-
ity within the ECM initial conditions on the overall viral
therapy. We consider three cases for the ECM initial con-
dition, which range from completely homogeneous ECM to

certain level of spatial inhomogeneities in the ECM. These
are given mathematically through

u(x; 0) =
1

2
+ 


(0:3sin(4� kxk2) + sin(4� k(4; 0)� xk2))

2
:

where the parameter 
 controls the heterogeneity level.
Finally, in this numerical experiment we use the baseline
parameters set 1 alongside the one-dose virus initial condi-
tion presented in 3(c). Figure A.19 shows the outcome of
this sensitivity exploration, and we observe there that as
ECM heterogeneity increases the tumour evolution moves
away from the compact growth exhibited in the homoge-
neous case, leading to a more complicated tumour mor-
phology.
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Figure 15: Multi-scale simulation results for macro-dynamics syncytia system (10) at three macro-micro stages (1,50 and 100) for
the improved treatment scenario corresponding to the parameter values listed in Table 3, showing: a. infected cancer cells density;
b. syncytia cancer cells density and c. total cancer cells density.

[2] H. Zeh, S. Downs-Canner, J. McCart, Z. Guo, U. Rao, L. Ra-
malingam, S. Thorne, H. Jones, P. Kalinski, E. Wieckowski,
M. O’Malley, M. Daneshmand, K. Hu, J. Bell, T. Hwang,
A. Moon, C. Breitbach, D. Kirn, D. Bartlett, First-in-man study
of western reserve strain oncolytic vaccinia virus: safety, sys-
tem spread, and anti tumour activity, Molecular Therapy 23 (1)
(2015) 2020–214.
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Figure 16: (a) Comparison of total tumour masses evolution over macro-micro stages 1 { 100 for the macro-dynamics case (10).
(b) Comparison of tumour invasion area over macro-micro stages 1 { 100 for the macro-dynamics case (10). (c) Comparison of
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case (10). (i) baseline parameter values as listed in Table 1; (ii) parameter values for improved anti-tumour therapy as listed in
Table 3.
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Figure 17: Multi-scale simulation results for macro-dynamics systems (10) (panels (a)), (17)+(18) (panels (b)), and (17)+(19)
(panels (c)), for the baseline parameter values from Table 1. All �gures show the total tumour distribution at three macro-micro
stages: 1, 50 and 100.
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Figure 18: Comparison between the dynamics of the baseline model (10) (red curve labeled (i)) and the generalised model (17)
(blue curve labeled (ii) for sub-case (18), and green curve labeled (iii) for sub-case (19)). (a) The evolution of total tumour mass
(uninfected+infected+syncytia cells) over macro-micro stages 1 { 100. (b) The evolution of tumour invasion area over macro-
micro stages 1 { 100. (c) The evolution of the ratio of total tumour masses to tumour invasion area over macro-micro stages 1 {
100 for the macro-dynamics case (17). All simulations have been performed using the baseline parameter values from Table 1.

20



(ECM initial condition) (tumour stage 50) (tumour stage 100)

a.

b.

c.

Figure A.19: Multi-scale simulation involving macro-dynamics (10) and three cases of ECM initial conditions, that correspond to
the following three levels of the heterogeneity parameter 
 , namely: a. 
 = 0; b. 
 = 0:0625; c. 
 = 0:125. Left column shows the
initial ECM distribution, while middle and right columns show the total tumour distribution at stages (50 and 100).
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